[1] INAGUMA Y, YOSHIDA M, TSUCHIYA T, et al. High-pressure synthesis of novel lithium niobate-type oxides[J]. Journal of Physics: Conference Series, 2010, 215: 012131. [2] INAGUMA Y, YOSHIDA M, KATSUMATA T. A polar oxide ZnSnO3 with a LiNbO3-type structure[J]. Journal of the American Chemical Society, 2008, 130(21): 6704-6705. [3] INAGUMA Y, AIMI A, SHIRAKO Y, et al. High-pressure synthesis, crystal structure, and phase stability relations of a LiNbO3-type polar titanate ZnTiO3 and its reinforced polarity by the second-order Jahn-Teller effect[J]. Journal of the American Chemical Society, 2014, 136(7): 2748-2756. [4] WU J M, CHEN C Y, ZHANG Y, et al. Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire[J]. ACS Nano, 2012, 6(5): 4369-4374. [5] CAO Y L, JIA D Z, ZHOU J, et al. Simple solid-state chemical synthesis of ZnSnO3 nanocubes and their application as gas sensors[J]. European Journal of Inorganic Chemistry, 2009, 2009(27): 4105-4109. [6] ZENG Y, ZHANG T, FAN H T, et al. Synthesis and gas-sensing properties of ZnSnO3 cubic nanocages and nanoskeletons[J]. Sensors and Actuators B: Chemical, 2009, 143(1): 449-453. [7] KOLB B, KOLPAK A M. First-principles design and analysis of an efficient, Pb-free ferroelectric photovoltaic absorber derived from ZnSnO3[J]. Chemistry of Materials, 2015, 27(17): 5899-5906. [8] HEDIN L. New method for calculating the one-particle Green's function with application to the electron-gas problem[J]. Physical Review, 1965, 139(3A): A796-A823. [9] MÜLLEROVÁ J, UTTA P, MEDLÍN R, et al. Optical properties of zinc titanate perovskite prepared by reactive RF sputtering[J]. Journal of Electrical Engineering, 2017, 68(7): 10-16. [10] BUDIGI L, NASINA M R, SHAIK K, et al. Structural and optical properties of zinc titanates synthesized by precipitation method[J]. Journal of Chemical Sciences, 2015, 127(3): 509-518. [11] ZHANG J, XU B, WANG Y S, et al. First-principles investigation of the ferroelectric, piezoelectric and nonlinear optical properties of LiNbO3-type ZnTiO3[J]. Scientific Reports, 2019, 9: 17632. [12] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186. [13] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, Condensed Matter, 1993, 47(1): 558-561. [14] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. [15] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [16] BECKE A D, JOHNSON E R. A simple effective potential for exchange[J]. The Journal of Chemical Physics, 2006, 124(22): 221101. [17] TRAN F, BLAHA P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential[J]. Physical Review Letters, 2009, 102(22): 226401. [18] LIU Q J, LIU Z T, FENG L P, et al. Mechanical, electronic, chemical bonding and optical properties of cubic BaHfO3: first-principles calculations[J]. Physica B: Condensed Matter, 2010, 405(18): 4032-4039. [19] LEE B, RUDD R E, KLEPEIS J E, et al. Elastic constants and volume changes associated with two high-pressure rhombohedral phase transformations in vanadium[J]. Physical Review B, 2008, 77(13): 134105. [20] BORN M, HUANG K. Dynamical theory and experiment I[M]. Berlin: Springer, 1982. [21] LIU Q J, LIU Z T. Structural, elastic, and mechanical properties of germanium dioxide from first-principles calculations[J]. Materials Science in Semiconductor Processing, 2014, 27: 765-776. [22] VOIGT W. Einleitung[M]//Lehrbuch der Kristallphysik. Wiesbaden: Vieweg+Teubner Verlag, 1966: 1-14. [23] REUSS A. Berechnung der fließgrenze von mischkristallen auf grund der plastizittsbedingung für einkristalle[J]. ZAMM-Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 1929, 9(1): 49-58. [24] HILL R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society Section A, 1952, 65(5): 349-354. [25] PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45(367): 823-843. [26] CHEN X Y, CHEN L J, YANG X B, et al. Tuning the polarization and magnetism in BiCoO3 by strain and oxygen vacancy effect: a first-principle study[J]. Journal of Applied Physics, 2012, 111(1): 013901. [27] ZHAO Y J, ZUNGER A. Site preference for Mn substitution in spintronic CuMIIIX2VI chalcopyrite semiconductors[J]. Physical Review B, 2004, 69(7): 075208. [28] CHEN X Y, YANG Y H, LAI G X, et al. Theoretical study of stability and optical absorption properties of ferroelectric materials ZnXO3 (X=Ge, Sn and Pb)[J]. Physica B: Condensed Matter, 2020, 580: 411748. [29] YUSA H, AKAOGI M, SATA N, et al. High-pressure transformations of ilmenite to perovskite, and lithium niobate to perovskite in zinc germanate[J]. Physics and Chemistry of Minerals, 2006, 33(3): 217-226. [30] YU R Z, HOJO H, MIZOGUCHI T, et al. A new LiNbO3-type polar oxide with closed-shell cations: ZnPbO3[J]. Journal of Applied Physics, 2015, 118(9): 094103. [31] 黄 昆,著.固体物理学[M].北京:高等教育出版社,1988:437-452. HUANG K. Solid state physics[M]. Beijing: Higher Education Press, 1988: 437-452. [32] SAHA S, SINHA T P, MOOKERJEE A. Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3[J]. Physical Review B, 2000, 62(13): 8828-8834. |