[1] WANG L, JIN G Y. High conversion efficiency and extra-cavity sum frequency 355 nm UV laser output[J]. IOP Conference Series: Materials Science and Engineering, 2019, 563(3): 032014. [2] 张洋洋,王丽荣,杨盈莹,等.高能量全固态355 nm紫外激光器[J].激光杂志,2015,36(8):11-13. ZHANG Y Y, WANG L R, YANG Y Y, et al. The high-energy all-solid-state 355 nm ultraviolet laser[J]. Laser Journal, 2015, 36(8): 11-13(in Chinese). [3] 杨松涛,韩微微,张文斌,等.355 nm激光新型陶瓷加工研究[J].电子工业专用设备,2011,40(2):8-11. YANG S T, HAN W W, ZHANG W B, et al. Investigation of 355 nm laser ceramics machining[J]. Equipment for Electronic Products Manufacturing, 2011, 40(2): 8-11(in Chinese). [4] 张 菲, 段 军, 曾晓雁, 等. 355 nm紫外激光器加工多层柔性线路板盲孔[J]. 红外与激光工程, 2010, 39(1): 143-146. ZHANG F, DUAN J, ZENG X Y, et al. Drilling blind holes on multi-layer FPC board with a 355 nm UV laser[J]. Infrared and Laser Engineering, 2010, 39(1): 143-146(in Chinese). [5] WANG X C, LI Z L, CHEN T, et al. 355 nm DPSS UV laser cutting of FR4 and BT/epoxy-based PCB substrates[J]. Optics and Lasers in Engineering, 2008, 46(5): 404-409. [6] 包凌东,韩敬华,段 涛,等.纳秒紫外重复脉冲激光烧蚀单晶硅的热力学过程研究[J].物理学报,2012,61(19):475-483. BAO L D, HAN J H, DUAN T, et al. Investigation of thermodynamic progress of silicon ablated by nanosecond UV repetitive pulse laser[J]. Acta Physica Sinica, 2012, 61(19): 475-483(in Chinese). [7] BI Y, FENG Y, GONG H, et al. High-average power THG of a diode-pumped Nd:YAG laser at 355 nm generated by LiB3O5 crystal[J]. Chinese Optics Letters, 2003, 1: 91-92. [8] LIU Q, WANG F, HONG H L, et al. Investigation of UV laser-induced damage by precursors at the surface of LBO crystal[J]. Journal of the Optical Society of America B, 2014, 31(2): 189. [9] PERLOV D, LIVNEH S, CZECHOWICZ P, et al. Progress in growth of large β-BaB2O4 single crystals[J]. Crystal Research and Technology, 2011, 46(7): 651-654. [10] WANG C X, WANG G Y, HICKS A V, et al. High-power Q-switched TEM00 mode diode-pumped solid state lasers with > 30 W output power at 355 nm[C]//Lasers and Applications in Science and Engineering. Proc SPIE 6100, Solid State Lasers XV: Technology and Devices, San Jose, California, USA. 2006, 6100: 335-348. [11] CHANG F, FU P Z, WU Y C, et al. Growth of large CsB3O5 crystals[J]. Journal of Crystal Growth, 2005, 277(1/2/3/4): 298-302. [12] KITANO H, MATSUI T, SATO K, et al. Efficient 355 nm generation in CsB3O5 crystal[J]. Optics Letters, 2003, 28(4): 263-265. [13] WU Y C, FU P Z, ZHENG F, et al. Growth of a nonlinear optical crystal La2CaB10O19 (LCB)[J]. Optical Materials, 2003, 23(1/2): 373-375. [14] WANG L R, WU Y, WANG G L, et al. 31.6 W, 355 nm generation with La2CaB10O19 crystals[J]. Applied Physics B, 2012, 108(2): 307-311. [15] ZHANG G C, WU Y C, LI Y G, et al. Flux growth and characterization of a new oxyborate crystal Na3La9O3(BO3)8[J]. Journal of Crystal Growth, 2005, 275(1/2): e1997-e2001. [16] LI Y G, WU Y C, ZHANG G C, et al. Flux growth and optical properties of Na3La9O3(BO3)8 crystals[J]. Journal of Crystal Growth, 2006, 292(2): 468-471. [17] ZHANG J X, WANG G L, LIU Z L, et al. Growth and optical properties of a new nonlinear Na3La9O3(BO3)8 crystal[J]. Optics Express, 2010, 18(1): 237-243. [18] 李云飞. Na3La9O3(BO3)8晶体生长及新型非线性光学晶体探索[D].北京:中国科学院大学,2020. Li Y F. Growth of Na3La9O3(BO3)8crystal and exploration of new-type nonlinear optical crystals[D]. Beijing: University of Chinese Academy of Sciences, 2020(in Chinese). [19] ZHANG J X, WANG L R, LI Y, et al. 355 nm laser generation based on Na3La9O3(BO3)8 crystal[J]. Optics Express, 2012, 20(15): 16490. [20] SHAN F X, ZHANG G C, ZHAI N X, et al. Temperature-dependent Sellmeier equations of nonlinear optical crystal Na3La9O3(BO3)8[J]. Optical Materials, 2014, 37: 589-592. |