[1] MUNK B. Frequency selective surfaces: theory and design[M]. New York: John Wiley, 2000. [2] PARKER E A, VARDAXOGLOU J C. Plane-wave illumination of concentric-ring frequency-selective surfaces[J]. IEE Proceedings H Microwaves, Antennas and Propagation, 1985, 132(3): 176. [3] VARDAXOGLOU J C, STYLIANOU A. Modal analysis of double-square frequency selective surfaces[C]. IEEE International Conference in Electromagnetics on Aerospace Applications. Torino, Italy. 1989: 355-358. [4] CWIK T, MITTRA R. Scattering from a periodic array of free-standing arbitrarily shaped perfectly conducting or resistive patches[J]. IEEE Transactions on Antennas and Propagation, 1987, 35(11): 1226-1234. [5] PELTON E, MUNK B. A streamlined metallic radome[J]. IEEE Transactions on Antennas and Propagation, 1974, 22(6): 799-803. [6] SARABANDI K, BEHDAD N. A frequency selective surface with miniaturized elements[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(5): 1239-1245. [7] CHIU C N, CHANG K P. A novel miniaturized-element frequency selective surface having a stable resonance[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 1175-1177. [8] YANG G H, ZHANG T, LI W L, et al. A novel stable miniaturized frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 1018-1021. [9] YAN M B, QU S B, WANG J F, et al. A miniaturized dual-band FSS with stable resonance frequencies of 2.4 GHz/5 GHz for WLAN applications[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 895-898. [10] SHENG X J, FAN J J, LIU N, et al. A miniaturized dual-band FSS with controllable frequency resonances[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(10): 915-917. [11] LU Z H, LIU P G, HUANG X J. A novel three-dimensional frequency selective structure[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 588-591. [12] ZHU J P, HAO Z Y, WANG C, et al. Dual-band 3-D frequency selective surface with multiple transmission zeros[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 596-600. [13] LIANG B Y, BAI M. Subwavelength three-dimensional frequency selective surface based on surface wave tunneling[J]. Optics Express, 2016, 24(13): 14697. [14] LI H X, LI B, ZHU L. A generalized synthesis technique for high-order and wideband 3-D frequency-selective structures with Chebyshev functions[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(7): 3936-3944. [15] MA Y H, ZHANG X M, WU S, et al. A hybrid 2-D-3-D miniaturized multiorder wide bandpass FSS[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(2): 307-311. [16] BARTON J H, GARCIA C R, BERRY E A, et al. 3-D printed all-dielectric frequency selective surface with large bandwidth and field of view[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(3): 1032-1039. [17] LI Y J, LI L, ZHANG Y L, et al. Design and synthesis of multilayer frequency selective surface based on antenna-filter-antenna using minkowski fractal structures[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(1): 133-141. [18] EBRAHIMI A, NIRANTAR S, WITHAYACHUMNANKUL W, et al. Second-order terahertz bandpass frequency selective surface with miniaturized elements[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(5): 761-769. [19] OMAR A A, SHEN Z X. Thin 3-D bandpass frequency-selective structure based on folded substrate for conformal radome applications[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(1): 282-290. [20] POZAR D M. Microwave engineering[M]. 3rd ed. Hoboken, NJ: J. Wiley, 2005. |