[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. [2] LIU F, MING P B, LI J. Ab initio calculation of ideal strength and phonon instability of graphene under tension[J]. Physical Review B, 2007, 76(6): 064120. [3] MOROZOV S V, NOVOSELOV K S, KATSNELSON M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Physical Review Letters, 2008, 100(1): 016602. [4] NOVOSELOV K S, FAL'KO V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200. [5] GEIM A K. Nobel lecture: random walk to graphene[J]. Reviews of Modern Physics, 2011, 83(3): 851-862. [6] NOVOSELOV K S. Graphene: materials in the Flatland (Nobel lecture)[J]. Angewandte Chemie, 2011, 50(31): 6986-7002. [7] NOVOSELOV K S, JIANG D, SCHEDIN F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451-10453. [8] BLAKE P, BRIMICOMBE P D, NAIR R R, et al. Graphene-based liquid crystal device[J]. Nano Letters, 2008, 8(6): 1704-1708. [9] HERNANDEZ Y, NICOLOSI V, LOTYA M, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568. [10] COLEMAN J N, LOTYA M, O'NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571. [11] LI M, ZHOU S S, WANG R Y, et al. In situ formed nanoparticle-assisted growth of large-size single crystalline h-BN on copper[J]. Nanoscale, 2018, 10(37): 17865-17872. [12] LI X S, CAI W W, AN J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314. [13] BAE S, KIM H, LEE Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8): 574-578. [14] WU Y P, CHOU H, JI H X, et al. Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu-Ni alloy foils[J]. ACS Nano, 2012, 6(9): 7731-7738. [15] RUT'KOV E V, AFANAS'EVA E Y, PETROV V N, et al. Fabrication of graphene and graphite films on the Ni(111) surface[J]. Technical Physics, 2016, 61(11): 1724-1728. [16] SUN J, NAM Y, LINDVALL N, et al. Growth mechanism of graphene on platinum: surface catalysis and carbon segregation[J]. Applied Physics Letters, 2014, 104(15): 152107. [17] WANG Q, WEI L, SULLIVAN M, et al. Graphene layers on Cu and Ni (111) surfaces in layer controlled graphene growth[J]. RSC Advances, 2013, 3(9): 3046-3053. [18] YANG S Y, ZHANG J X, CHI M Y, et al. Excellent superelasticity of Cu-Al-Mn-Cr shape memory single crystal obtained only through annealing cast polycrystalline alloy[J]. Scripta Materialia, 2019, 165: 20-24. [19] JIN S, HUANG M, KWON Y, et al. Colossal grain growth yields single-crystal metal foils by contact-free annealing[J]. Science, 2018, 362(6418): 1021-1025. [20] WU M H, ZHANG Z B, XU X Z, et al. Seeded growth of large single-crystal copper foils with high-index facets[J]. Nature, 2020, 581(7809): 406-410. [21] LI L, MA T, YU W, et al. Fast growth of centimeter-scale single-crystal copper foils with high-index planes by the edge-incision effect[J]. 2D Materials, 2021, 8(3): 035019. [22] XU X Z, ZHANG Z H, DONG J C, et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil[J]. Science Bulletin, 2017, 62(15): 1074-1080. [23] CHEN Y, ZHANG N, LI Y F, et al. Microscale-patterned graphene electrodes for organic light-emitting devices by a simple patterning strategy[J]. Advanced Optical Materials, 2018, 6(13): 1701348. [24] GROOVER M P. Fundamentals of modern manufacturing: materials, processes and systems[M]. Wiley: Hoboken, NJ, 2019. [25] LUO D, CHOE M, BIZAO R A, et al. Folding and fracture of single-crystal graphene grown on a Cu(111) foil[J]. Advanced Materials, 2022, 34(15): 2110509. [26] SRIDHARA K, FEIGELSON B N, WOLLMERSHAUSER J A, et al. Electrochemically prepared polycrystalline copper surface for the growth of hexagonal boron nitride[J]. Crystal Growth & Design, 2017, 17(4): 1669-1678. [27] CHO J Y, MIRPURI K, LEE D N, et al. Texture investigation of copper interconnects with a different line width[J]. Journal of Electronic Materials, 2005, 34(1): 53-61. [28] ROBINSON Z R, TYAGI P, MURRAY T M, et al. Substrate grain size and orientation of Cu and Cu-Ni foils used for the growth of graphene films[J]. Journal of Vacuum Science & Technology A, 2012, 30(1): 011401. [29] SONG L, CI L J, LU H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers[J]. Nano Letters, 2010, 10(8): 3209-3215. [30] XIA F N, FARMER D B, LIN Y M, et al. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature[J]. Nano Letters, 2010, 10(2): 715-718. [31] DENG T, ZHANG Z H, LIU Y X, et al. Three-dimensional graphene field-effect transistors as high-performance photodetectors[J]. Nano Letters, 2019, 19(3): 1494-1503. [32] JMAI B, SILVA V, MENDES P M. 2D electronics based on graphene field effect transistors: tutorial for modelling and simulation[J]. Micromachines, 2021, 12(8): 979. |