[1] RONG Y G, HU Y, MEI A Y, et al. Challenges for commercializing perovskite solar cells[J]. Science, 2018, 361(6408): eaat8235. [2] JUNG H S, PARK N G. Perovskite solar cells: from materials to devices[J]. Small, 2015, 11(1): 10-25. [3] WU T H, QIN Z Z, WANG Y B, et al. The main progress of perovskite solar cells in 2020-2021[J]. Nano-Micro Letters, 2021, 13(1): 152. [4] ALLA M, MANJUNATH V, CHAWKI N, et al. Optimized CH3NH3PbI3XClX based perovskite solar cell with theoretical efficiency exceeding 30%[J]. Optical Materials, 2022, 124: 112044. [5] JAISWAL R, RANJAN R, SRIVASTAVA N, et al. Numerical study of eco-friendly Sn-based perovskite solar cell with 25.48% efficiency using SCAPS-1D[J]. Journal of Materials Science: Materials in Electronics, 2023, 34(8): 753. [6] LUO W, XU J X, LIU S Y. Optimization of all-inorganic CsPbI3-based inverted perovskite solar cells by numerical simulation[J]. Journal of Electronic Materials, 2023, 52(3): 2216-2226. [7] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. [8] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (Version 58)[J]. Progress in Photovoltaics: Research and Applications, 2021, 29(7): 657-667. [9] NAKKA L, CHENG Y H, ABERLE A G, et al. Analytical review of spiro-OMeTAD hole transport materials: paths toward stable and efficient perovskite solar cells[J]. Advanced Energy and Sustainability Research, 2022, 3(8): 2200045. [10] MEHRABIAN M, AFSHAR E N, AKHAVAN O. TiO2 and C60 transport nanolayers in optimized Pb-free CH3NH3SnI3-based perovskite solar cells[J]. Materials Science and Engineering: B, 2023, 287: 116146. [11] ZHOU P, BU T L, SHI S W, et al. Efficient and stable mixed perovskite solar cells using P3HT as a hole transporting layer[J]. Journal of Materials Chemistry C, 2018, 6(21): 5733-5737. [12] IMANI S, SEYED-TALEBI S M, BEHESHTIAN J, et al. Simulation and characterization of CH3NH3SnI3-based perovskite solar cells with different Cu-based hole transporting layers[J]. Applied Physics A, 2023, 129(2): 1-13. [13] ISLAM M B, YANAGIDA M, SHIRAI Y, et al. NiOx hole transport layer for perovskite solar cells with improved stability and reproducibility[J]. ACS Omega, 2017, 2(5): 2291-2299. [14] ALLA M, BIMLI S, MANJUNATH V, et al. Towards lead-free all-inorganic perovskite solar cell with theoretical efficiency approaching 23%[J]. Materials Technology, 2022, 37(14): 2963-2969. [15] BOUAZIZI S, TLILI W, BOUICH A, et al. Design and efficiency enhancement of FTO/PC60BM/CsSn0.5Ge0.5I3/Spiro-OMeTAD/Au perovskite solar cell utilizing SCAPS-1D Simulator[J]. Materials Research Express, 2022, 9(9): 096402. [16] ZHANG P, WU J A, ZHANG T, et al. Perovskite solar cells with ZnO electron-transporting materials[J]. Advanced Materials, 2018, 30(3): 1703737. [17] LU H, TIAN W, GU B K, et al. TiO2 electron transport bilayer for highly efficient planar perovskite solar cell[J]. Small, 2017, 13(38): 1701535. [18] SINGH A K, SRIVASTAVA S, MAHAPATRA A, et al. Performance optimization of lead free-MASnI3 based solar cell with 27% efficiency by numerical simulation[J]. Optical Materials, 2021, 117: 111193. [19] HAO F, STOUMPOS C C, CAO D H, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nature Photonics, 2014, 8(6): 489-494. [20] PATEL P K. Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell[J]. Scientific Reports, 2021, 11: 3082. [21] MOTTAKIN M, SOBAYEL K, SARKAR D, et al. Design and modelling of eco-friendly CH3NH3SnI-3 based perovskite solar cells with suitable transport layers[J]. Energies, 2021, 14(21): 7200. [22] KANOUN A A, KANOUN M B, MERAD A E, et al. Toward development of high-performance perovskite solar cells based on CH3NH3GeI3 using computational approach[J]. Solar Energy, 2019, 182: 237-244. [23] HUNDE B R, WOLDEYOHANNES A D. Performance analysis and optimization of perovskite solar cell using SCAPS-1D and genetic algorithm[J]. Materials Today Communications, 2023, 34: 105420. [24] BHATTARAI S, DAS T D. Optimization of carrier transport materials for the performance enhancement of the MAGeI3 based perovskite solar cell[J]. Solar Energy, 2021, 217: 200-207. [25] KUMAR M, RAJ A, KUMAR A, et al. Computational analysis of bandgap tuning, admittance and impedance spectroscopy measurements in lead-free MASnI3 perovskite solar cell device[J]. International Journal of Energy Research, 2022, 46(8): 11456-11469. [26] SLAMI A, BOUCHAOUR M, MERAD L. Numerical study of based perovskite solar cells by SCAPS-1D[J]. International Journal of Energy and Environment, 2019, 3: 17-21. [27] ALIAGHAYEE M. Optimization of the perovskite solar cell design with layer thickness engineering for improving the photovoltaic response using SCAPS-1D[J]. Journal of Electronic Materials, 2023, 52(4): 2475-2491. [28] MOHANTY I, MANGAL S, SINGH U P. Defect optimization of CZTS/MASnI3 heterojunction solar cell yielding 30.8% efficiency[J]. Journal of Electronic Materials, 2023, 52(4): 2587-2595. [29] MUSHTAQ S, TAHIR S, ASHFAQ A, et al. Performance optimization of lead-free MASnBr3 based perovskite solar cells by SCAPS-1D device simulation[J]. Solar Energy, 2023, 249: 401-413. |