[1] 余冬燕, 吴幸雅, 闫共芹, 等. 稀土掺杂磷酸盐荧光粉的研究进展[J]. 材料导报, 2020, 34(S2): 1041-1047. YU D Y, WU X Y, YAN G Q, et al. Recent advances of rare-earth doped phosphate phosphors[J]. Materials Reports, 2020, 34(S2): 1041-1047 (in Chinese). [2] 袁 博, 祁超超, 张相挺, 等. 颜色可调Ca2LaTaO6∶Dy3+, Tb3+荧光粉的制备、发光性能及能量传递[J]. 人工晶体学报, 2021, 50(9): 1715-1722. YUAN B, QI C C, ZHANG X T, et al. Preparation, luminescence properties and energy transfer of Ca2LaTaO6∶Dy3+, Tb3+ phosphors with tunable color[J]. Journal of Synthetic Crystals, 2021, 50(9): 1715-1722 (in Chinese). [3] 金 叶, 王庆平. 荧光粉MPO4∶Eu3+, Bi3+/Tb3+(M=La, Gd, Y)的结构及发光性能研究[J]. 发光学报, 2014, 35(1): 61-65. JIN Y, WANG Q P. Crystal structure and photoluminescence properties of MPO4∶Eu3+, Bi3+/Tb3+(M=La, Gd, Y) phosphors[J]. Chinese Journal of Luminescence, 2014, 35(1): 61-65 (in Chinese). [4] 穆冬迪, 张 涛, 欧阳艳, 等. 微波法制备CaMoO4∶Tb3+, Eu3+白色荧光粉及其发光性能研究[J]. 人工晶体学报, 2018, 47(4): 849-853. MU D D, ZHANG T, OUYANG Y, et al. Preparation of CaMoO4∶Tb3+, Eu3+ white phosphors by microwave irradiation and its luminescence properties[J]. Journal of Synthetic Crystals, 2018, 47(4): 849-853 (in Chinese). [5] 李 亮, 雷小华, 任林娇, 等. 基质对Tb3+单掺荧光玻璃发光性质的影响[J]. 发光学报, 2014, 35(4): 420-424. LI L, LEI X H, REN L J, et al. Effect of glass matrix on luminescent properties of Tb3+ doped luminescence glass[J]. Chinese Journal of Luminescence, 2014, 35(4): 420-424 (in Chinese). [6] 欧奕意, 王笑军, 梁宏斌. K3La(PO4)2基质中Tb3+的发光和能量传递[J]. 发光学报, 2022, 43(9): 1350-1360. OU Y Y, WANG X J, LIANG H B. Luminescence and energy transfer of Tb3+ in K3La(PO4)2[J]. Chinese Journal of Luminescence, 2022, 43(9): 1350-1360 (in Chinese). [7] 金 鸿, 刘 可. 两种形貌GdPO4纳米粒子的制备和光学性质研究[J]. 化学研究与应用, 2010, 22(1): 53-58. JIN H, LIU K. Preparation and optical properties of two different morphology GdPO4 nanoparticles[J]. Chemical Research and Application, 2010, 22(1): 53-58 (in Chinese). [8] 张永明, 宋国轶, 曹启华, 等. Eu3+掺杂GdPO4微晶玻璃的制备及其发光特性的研究[J]. 光电子·激光, 2014, 25(6): 1124-1128. ZHANG Y M, SONG G Y, CAO Q H, et al. Preparation and luminescence properties of Eu3+ doped GdPO4 glass ceramic[J]. Journal of Optoelectronics·Laser, 2014, 25(6): 1124-1128 (in Chinese). [9] 吴燕利, 徐贤柱, 陈 曦, 等. 荧光/顺磁性双功能CS/GdPO4∶Tb微球的制备及性质[J]. 功能材料, 2015, 46(21): 21124-21127+21132. WU Y L, XU X Z, CHEN X, et al. Preparation and properties of luminescent-paramagnetic CS/GdPO4∶Tb bifunctional microspheres[J]. Journal of Functional Materials, 2015, 46(21): 21124-21127+21132 (in Chinese). [10] LI L, LI G M, WANG D J, et al. Energy transfer mechanism of GdPO4∶RE3+ (RE=Tb, Tm) under VUV-UV excitation[J]. Science in China Series E: Technological Sciences, 2006, 49(4): 408-413. [11] SONG H J, ZHOU L Q, LI L, et al. Hydrothermal synthesis, characterization and luminescent properties of GdPO4·H2O∶Tb3+ nanorods and nanobundles[J]. Materials Research Bulletin, 2013, 48(12): 5013-5018. [12] LIEN P T, HUONG N T, HUONG T T, et al. Optimization of Tb3+/Gd3+ molar ratio for rapid detection of naja atra cobra venom by immunoglobulin G-conjugated GdPO4·nH2O∶Tb3+ nanorods[J]. Journal of Nanomaterials, 2019: 1-8. [13] YANG J F, WANG X X, SONG L N, et al. Tunable luminescence and energy transfer properties of GdPO4∶Tb3+, Eu3+ nanocrystals for warm-white LEDs[J]. Optical Materials, 2018, 85: 71-78. [14] ZHAO M L, LI L P, LI G S. Advances of solution chemistry in stabilizing different crystal phases of inorganic nano-compounds[J]. CrystEngComm, 2016, 18(48): 9209-9222. [15] 蒋春东, 张 萍, 吴 疆. YPO4∶Gd, Eu荧光粉的制备和发光性能研究[J]. 科学技术与工程, 2014, 14(16): 1-5. JIANG C D, ZHANG P, WU J. The synthesis and light emitting research of YPO4∶Gd, Eu phosphor[J]. Science Technology and Engineering, 2014, 14(16): 1-5 (in Chinese). [16] 李艳红, 洪广言. 纳米GdPO4∶Eu3+的合成和光谱特性[J]. 发光学报, 2005, 26(5): 587-591. LI Y H, HONG G Y. Synthesis and spectra properties of nanocrystalline GdPO4∶Eu3+[J]. Chinese Journal of Luminescence, 2005, 26(5): 587-591.(in Chinese) [17] 兰 斌, 李 拓, 于 简, 等. X射线激发NaGdF4∶Tb3+, Eu3+的光谱及能量传递性质研究[J]. 中国稀土学报, 2021, 39(5): 742-749. LAN B, LI T, YU J, et al. X-ray excited luminescence properties and energy transfer of Tb3+, Eu3+ co-doped NaGdF4 nanoparticles[J]. Journal of the Chinese Society of Rare Earths, 2021, 39(5): 742-749 (in Chinese). [18] KHADRAOUI Z, HORCHANI-NAIFER K, FERHI M, et al. The density functional study of electronic structure and optical properties of gadolinium monophosphate[J]. Chinese Journal of Physics, 2019, 59: 333-339. [19] ZENG H H, DENG J, PENG H, et al. Praseodymium selective fluorescence recognition based on GdPO4∶Tb3+ probe via energy transfer from Tb3+ to Pr3+ ions[J]. Microchimica Acta, 2021, 188(3): 1-9. [20] GARRIDO HERNÁNDEZ A, BOYER D, POTDEVIN A, et al. Hydrothermal synthesis of lanthanide-doped GdPO4 nanowires and nanoparticles for optical applications[J]. Physica Status Solidi a Applications and Materials Science, 2014, 211(2): 498-503. [21] YAIPHABA N, NINGTHOUJAM R S, SINGH N R, et al. Luminescence properties of redispersible Tb3+-doped GdPO4 nanoparticles prepared by an ethylene glycol route[J]. European Journal of Inorganic Chemistry, 2010(18): 2682-2687. [22] 李 锋, 郭兴家, 王 猛, 等. GdPO4∶Eu3+和GdPO4∶Ce3+, Tb3+纳米晶多元醇法的合成与表征[J]. 无机化学学报, 2009, 25(6): 968-972. LI F, GUO X J, WANG M, et al. Polyol-mediated synthesis and characterization of GdPO4∶Eu3+ and GdPO4∶Ce3+, Tb3+ nanocrystals[J]. Chinese Journal of Inorganic Chemistry, 2009, 25(6): 968-972 (in Chinese). [23] MA Y L, ZHANG L, ZHOU T Y, et al. Dual effect synergistically triggered Ce∶(Y, Tb)3(Al, Mn)5O12 transparent ceramics enabling a high color-rendering index and excellent thermal stability for white LEDs[J]. Journal of the European Ceramic Society, 2021, 41(4): 2834-2846. |