[1] JI X Y, ZHANG J L, LI Y, et al. Improving quantum efficiency and thermal stability in blue-emitting Ba2-xSrxSiO4∶Ce3+ phosphor via solid solution[J]. Chemistry of Materials, 2018, 30(15): 5137-5147. [2] SUN T L, LIU D Y, LIU Y G, et al. A novel cyan-emitting phosphor Ba2La8(SiO4)6O2∶Eu2+ for full-spectrum white light-emitting diodes[J]. Optical Materials, 2022, 127: 112287. [3] DENG A X, WANG Z L, ZHOU X F, et al. MgGd4Si3O13∶Ce3+, Mn2+: a dual-excitation temperature sensor[J]. ACS Omega, 2022, 7(8): 6481-6487. [4] HUO X X, WANG Z J, TAO C J, et al. Single-component white emitting phosphor Mg2Y2Al2Si2O12∶Tb3+, Eu3+, Tm3+ for white LEDs[J]. Journal of Alloys and Compounds, 2022, 902: 163823. [5] ZHANG Q, WANG X C, TANG Z B, et al. A K3ScSi2O7∶Eu2+ based phosphor with broad-band NIR emission and robust thermal stability for NIR pc-LEDs[J]. Chemical Communications, 2020, 56(34): 4644-4647. [6] QIAO J W, ZHOU G J, ZHOU Y Y, et al. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes[J]. Nature Communications, 2019, 10: 5267. [7] ZHANG J A, JIN C. Structure, morphology and upconversion luminescence of rare earth ions doped LiY9(SiO4)6O2 for temperature sensing[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 3490-3498. [8] LI G G, ZHANG Y, GENG D L, et al. Single-composition trichromatic white-emitting Ca4Y6(SiO4)6O∶Ce3+/Mn2+/Tb3+ phosphor: luminescence and energy transfer[J]. ACS Applied Materials & Interfaces, 2012, 4(1): 296-305. [9] ZHENG B F, ZHANG X T, ZHANG D, et al. Ultra-wideband phosphor Mg2Gd8(SiO4)6O2∶Ce3+, Mn2+: energy transfer and pressure-driven color tuning for potential applications in LEDs and pressure sensors[J]. Chemical Engineering Journal, 2022, 427: 131897. [10] LATSHAW A M, MORRISON G, ZUR LOYE K D, et al. Intrinsic blue-white luminescence, luminescence color tunability, synthesis, structure, and polymorphism of K3YSi2O7[J]. CrystEngComm, 2016, 18(13): 2294-2302. [11] PUSTOVAROV V A, IVANOVSKIKH K V, KHATCHENKO Y E, et al. Luminescence spectroscopy and decay kinetics of Pr3+ ions in K3LuSi2O7∶Pr3+[J]. Physics of the Solid State, 2019, 61(5): 752-757. [12] LAI S Q, ZHAO M, QIAO J W, et al. Data-driven photoluminescence tuning in Eu2+-doped phosphors[J]. The Journal of Physical Chemistry Letters, 2020, 11(14): 5680-5685. [13] QIAO J W, AMACHRAA M, MOLOKEEV M, et al. Engineering of K3YSi2O7 to tune photoluminescence with selected activators and site occupancy[J]. Chemistry of Materials, 2019, 31(18): 7770-7778. [14] ZHOU W Y, SUN Z S, LUO J B, et al. Great emission enhancement of high-efficient broadband K3YSi2O7∶Eu red phosphor via enhancing crystallinity[J]. Journal of Alloys and Compounds, 2021, 854: 157188. [15] LI L J, TONG Y, CHEN J, et al. Up-conversion and temperature sensing properties of Na2GdMg2(VO4)3∶Yb3+, Er3+ phosphors[J]. Journal of the American Ceramic Society, 2022, 105(1): 384-391. [16] ZHANG Y H, CAO Y Z, ZHAO Y E, et al. Optical temperature sensor based on upconversion luminescence of Er3+ doped GdTaO4 phosphors[J]. Journal of the American Ceramic Society, 2021, 104(1): 361-368. [17] CHEN J, ZHANG W N, CUI S F, et al. Up-conversion luminescence properties and temperature sensing performances of Ba5Y8Zn4O21∶Yb3+, Er3+ phosphors[J]. Journal of Alloys and Compounds, 2021, 875: 159922. [18] GUTIÉRREZ-CANO V, RODRÍGUEZ F, GONZÁLEZ J A, et al. Upconversion and optical nanothermometry in LaGdO3∶Er3+ nanocrystals in the RT to 900 K range[J]. The Journal of Physical Chemistry C, 2019, 123(49): 29818-29828. [19] LIU W G, WANG X J, ZHU Q, et al. Upconversion luminescence and favorable temperature sensing performance of eulytite-type Sr3Y(PO4)3∶Yb3+/Ln3+ phosphors (Ln=Ho, Er, Tm)[J]. Science and Technology of Advanced Materials, 2019, 20(1): 949-963. [20] LIU W G, WANG X J, ZHU Q, et al. Tb3+/Mn2+ singly/doubly doped Sr3Ce(PO4)3 for multi-color luminescence, excellent thermal stability and high-performance optical thermometry[J]. Journal of Alloys and Compounds, 2020, 829: 154563. [21] YANG X, WU Z Y, YANG Z N, et al. Flame-made Y2O3∶Yb3+/Er3+ upconversion nanoparticles: mass production synthesis, multicolor tuning and thermal sensing studies[J]. Journal of Alloys and Compounds, 2021, 854: 157078. [22] 李 林, 赵 静. 绿色荧光粉Na3YSi2O7∶Tb3+的制备及发光性能研究[J]. 光源与照明, 2019(3): 36-38. LI L, ZHAO J. Preparation and luminescent properties of green phosphor Na3YSi2O7∶Tb3+[J]. Lamps & Lighting, 2019(3): 36-38 (in Chinese). [23] 龚长帅, 薛绪岩, 冯晓雯, 等. (La0.88Yb0.10Ho0.02)2W2O9荧光粉的上转换发光及双模式荧光测温[J]. 功能材料, 2023, 54(3): 3179-3186+3200. GONG C S, XUE X Y, FENG X W, et al. Up-conversion photoluminescence of (La0.88Yb0.10Ho0.02)2W2O9 phosphor and dual-mode thermometry[J]. Journal of Functional Materials, 2023, 54(3): 3179-3186+3200 (in Chinese). [24] JIANG T, TIAN Y, XING M M, et al. Research on the photoluminescence and up-conversion luminescence properties of Y2Mo4O15∶Yb, Ho under 454 and 980 nm excitation[J]. Materials Research Bulletin, 2018, 98: 328-334. [25] GUO Y Y, WANG D Y, ZHAO X, et al. Fabrication, microstructure and upconversion luminescence of Yb3+/Ln3+ (Ln = Ho, Er, Tm) co-doped Y2Ti2O7 ceramics[J]. Materials Research Bulletin, 2016, 73: 84-89. [26] ZHANG H, LIANG Y J, YANG H, et al. Highly sensitive dual-mode optical thermometry in double-perovskite oxides via Pr3+/Dy3+ energy transfer[J]. Inorganic Chemistry, 2020, 59(19): 14337-14346. [27] SUO H, GUO C F, WANG W B, et al. Mechanism and stability of spectrally pure green up-conversion emission in Yb3+/Ho3+ co-doped Ba5Gd8Zn4O21 phosphors[J]. Dalton Transactions, 2016, 45(6): 2629-2636. [28] YU X C, LI X J, JIANG Y L, et al. Effects of K+ and Gd3+ concentration on up-conversion luminescence and optical thermometric properties in NaYF4: Yb/Ho microcrystals[J]. Journal of Alloys and Compounds, 2022, 896: 162793. [29] HU S A, YUAN M H, SONG C Q, et al. The role of 2-ethylhexanoic acid in manipulating the morphology and upconversion of flame-made Y2O3∶Yb3+/Ho3+ nanoparticles towards remote temperature sensing[J]. CrystEngComm, 2022, 24(39): 6925-6932. [30] PEI Y Q, AN S S, ZHUANG C, et al. Yb3+-concentration-dependent upconversion luminescence of Ho3+-Yb3+ codoped La9.31(Si1.04O4)6O2 for optical thermometer[J]. Journal of Luminescence, 2022, 250: 119073. [31] WANG S Y, ZHU K S, WANG T, et al. Sensitive Ho3+, Yb3+ co-doped mixed sesquioxide single crystal fibers thermometry based on upconversion luminescence[J]. Journal of Alloys and Compounds, 2022, 891: 162062. [32] LI W C, HU L L, CHEN W, et al. The effect of temperature on green and red upconversion emissions of LiYF4∶20Yb3+, 1Ho3+ and its application for temperature sensing[J]. Journal of Alloys and Compounds, 2021, 866: 158813. [33] CHAI X N, LI J, WANG X S, et al. Upconversion luminescence and temperature-sensing properties of Ho3+/Yb3+-codoped ZnWO4 phosphors based on fluorescence intensity ratios[J]. RSC Advances, 2017, 7(64): 40046-40052. |