[1] SCHMIDT J, PEIBST R, BRENDEL R. Surface passivation of crystalline silicon solar cells: present and future[J]. Solar Energy Materials and Solar Cells, 2018, 187: 39-54. [2] YOSHIKAWA K, KAWASAKI H, YOSHIDA W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%[J]. Nature Energy, 2017, 2: 17032. [3] HAASE F, HOLLEMANN C, SCHÄFER S, et al. Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 186: 184-193. [4] YANG P C, RAZZAQ S, JIAO R Y, et al. UV light-induced degradation of industrial silicon HJT solar cells: degradation mechanism and recovery strategies[J]. Journal of Solar Energy Research Updates, 2023, 10: 36-45. [5] CHEN Y, CHEN D, ALTERMATT P P, et al. >25% large area industrial silicon solar sell: learning from history and future perspective[C]. Marseille, France: 36th EU PVSEC, 2019. [6] GREEN M A, DUNLOP E D, LEVI D H, et al. Solar cell efficiency tables (version 54)[J]. Progress in Photovoltaics: Research and Applications, 2019, 27(7): 565-575. [7] LOHMÜLLER E, WERNER S L, WÖHRLE N, et al. BBr3 diffusion with second deposition for laser-doped selective emitters from borosilicate glass[J]. Solar Energy Materials and Solar Cells, 2018, 186(6): 291-299. [8] LI M J, WONG J, WANG E C, et al. Predictive simulation framework for boron diffused p+ layer optimization: sensitivity analysis of boron tube diffusion process parameters of industrial n-type silicon wafer solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 189: 63-74. [9] MÜLLER M, FISCHER G, BITNAR B, et al. Loss analysis of 22% efficient industrial PERC solar cells[J]. Energy Procedia, 2017, 124(5): 131-137. [10] WEBER J, WERNER S L N, LOHMÜLLER E, et al. Simulations on laser-phosphorous-doped selective emitters[C]//2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). June 10-15, 2018, Waikoloa, HI, USA. IEEE, 2018: 3588-3592. [11] TAO Y G, MADANI K, CHO E, et al. High-efficiency selective boron emitter formed by wet chemical etch-back for n-type screen-printed Si solar cells[J]. Applied Physics Letters, 2017, 110(2): 021101.1-021101.5. [12] SCHIELE Y, JOOS S, HAHN G, et al. Etch-back of p+ structures for selective boron emitters in n-type c-Si solar cells[J]. Energy Procedia, 2014, 55: 295-301. [13] 屈 盛. 丝网印刷制作选择性发射极太阳电池的研究[D]. 昆明: 云南师范大学, 2005. QU S. Study on making selective emitter solar cells by screen printing[D]. Kunming: Yunnan Normal University, 2005 (in Chinese). [14] TOMIZAWA Y, IMAMURA T, SOEDA M, et al. Laser doping of boron-doped Si paste for high-efficiency silicon solar cells[J]. Japanese Journal of Applied Physics, 2015, 54(8S1): 08KD06. [15] DING D, LU G, LI Z P, et al. High-efficiency n-type silicon PERT bifacial solar cells with selective emitters and poly-Si based passivating contacts[J]. Solar Energy, 2019, 193(6): 494-501. [16] FERNANDEZ-ROBLEDO S, KLUSKA S, GREULICH J, et al. Selective boron emitters using laser-induced forward transfer versus laser doping from borosilicate glass[J]. IEEE Journal of Photovoltaics, 2017, 7(5): 1254-1263. [17] WU W L, ZHANG Z W, ZHENG F, et al. Efficiency enhancement of bifacial PERC solar cells with laser-doped selective emitter and double-screen-printed Al grid[J]. Progress in Photovoltaics: Research and Applications, 2018, 26(9): 752-760. |