[1] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. [2] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. [3] GOODENOUGH J B, KIM Y. Challenges for rechargeable batteries[J]. Journal of Power Sources, 2011, 196(16): 6688-6694. [4] ZUBI G, DUFO-LÓPEZ R, CARVALHO M, et al. The lithium-ion battery: state of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 292-308. [5] LIU Q N, HU Z, CHEN M Z, et al. Recent progress of layered transition metal oxide cathodes for sodium-ion batteries[J]. Small, 2019, 15(32): 1805381. [6] HWANG J Y, KIM J, YU T Y, et al. A new P2-type layered oxide cathode with extremely high energy density for sodium-ion batteries[J]. Advanced Energy Materials, 2019, 9(15): 1803346. [7] CHEN X L, CHENG C, DING M L, et al. Elucidating the redox behavior in different p-type layered oxides for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(39): 43665-43673. [8] JIN T, LI H X, ZHU K J, et al. Polyanion-type cathode materials for sodium-ion batteries[J]. Chemical Society Reviews, 2020, 49(8): 2342-2377. [9] SHAO M M, WANG B, LIU M C, et al. A high-voltage and cycle stable aqueous rechargeable Na-ion battery based on Na2Zn3[Fe(CN)6]2-NaTi2(PO4)3 intercalation chemistry[J]. ACS Applied Energy Materials, 2019, 2(8): 5809-5815. [10] NI Q, BAI Y, WU F, et al. Energy storage: polyanion-type electrode materials for sodium-ion batteries[J]. Advanced Science, 2017, 4(3): 1600275. [11] FANG Y J, XIAO L F, CHEN Z X, et al. Recent advances in sodium-ion battery materials[J]. Electrochemical Energy Reviews, 2018, 1(3): 294-323. [12] GUTIERREZ A, DOSE W M, BORKIEWICZ O, et al. On disrupting the Na+-ion/vacancy ordering in P2-type sodium-manganese-nickel oxide cathodes for Na+-ion batteries[J]. The Journal of Physical Chemistry C, 2018, 122(41): 23251-23260. [13] WANG P F, YAO H R, LIU X Y, et al. Na+/vacancy disordering promises high-rate Na-ion batteries[J]. Science Advances, 2018, 4(3): eaar6018. [14] ZHANG X H, PANG W L, WAN F, et al. P2-Na2/3Ni1/3Mn5/9Al1/9O2 microparticles as superior cathode material for sodium-ion batteries: enhanced properties and mechanism via graphene connection[J]. ACS Applied Materials & Interfaces, 2016, 8(32): 20650-20659. [15] ZHUO Y, CHEN T, LIU W F, et al. Nanoparticles assembled microspheres as a high-rate cathode material for sodium ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(2): A10-A14. [16] ZHOU P F, ZHANG J, CHE Z N, et al. Insights into the enhanced structure stability and electrochemical performance of Ti4+/F- co-doped P2-Na0.67Ni0.33Mn0.67O2 cathodes for sodium ion batteries at high voltage[J]. Journal of Energy Chemistry, 2022, 67: 655-662. [17] ZHANG L Y, GUAN C H, XIE Y Y, et al. Heteroatom-substituted P2-Na2/3Ni1/4Mg1/12Mn2/3O2 cathode with{010}exposing facets boost anionic activity and high-rate performance for Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(16): 18313-18323. [18] YUAN S Q, QI J Z, JIANG M D, et al. Improved cycling performance of P2-Na0.67Ni0.33Mn0.67O2 based on Sn substitution combined with polypyrrole coating[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 3793-3804. [19] ZHANG F P, LIAO J H, XU L, et al. Stabilizing P2-type Ni-Mn oxides as high-voltage cathodes by a doping-integrated coating strategy based on zinc for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(34): 40695-40704. [20] KIM H, PARK J H, KIM S C, et al. Multiple effects of Mg1-xNixO coating on P2-type Na0.67Ni0.33Mn0.67O2 to generate highly stable cathodes for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 856: 157294. [21] JIAO J Y, WU K, DANG R B, et al. A collaborative strategy with ionic conductive Na2SiO3 coating and Si doping of P2-Na0.67Fe0.5Mn0.5O2 cathode: an effective solution to capacity attenuation[J]. Electrochimica Acta, 2021, 384: 138362. [22] YANG L, LUO S H, WANG Y F, et al. Cu-doped layered P2-type Na0.67Ni0.33-xCuxMn0.67O2 cathode electrode material with enhanced electrochemical performance for sodium-ion batteries[J]. Chemical Engineering Journal, 2021, 404: 126578. [23] PEI Q A, LU M L, LIU Z L, et al. Improving the Na0.67Ni0.33Mn0.67O2 cathode material for high-voltage cyclability via Ti/Cu codoping for sodium-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(2): 1953-1962. [24] WALCZAK K, PLEWA A, GHICA C, et al. NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide-experimental and theoretical evidence of high electrochemical performance in sodium batteries[J]. Energy Storage Materials, 2022, 47: 500-514. [25] 孔国强, 冷明哲, 周战荣, 等. Sb掺杂O3型Na0.9Ni0.5Mn0.3Ti0.2O2钠离子电池正极材料[J]. 无机材料学报, 2023, 38(6): 656-664. KONG G Q, LENG M Z, ZHOU Z R, et al. Sb doped O3 type Na0.9Ni0.5Mn0.3Ti0.2O2 cathode material for na-ion battery [J]. Journal of Inorganic Materials, 2023, 38(6): 656-664 (in Chinese). [26] CHEN L, REN S, LIU L, et al. Catalytic performance over Mn-Ce catalysts for NH3-SCR of NO at low temperature: different zeolite supports[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107167. [27] YUE L C, WANG D, WU Z G, et al. Polyrrole-encapsulated Cu2Se nanosheets in situ grown on Cu mesh for high stability sodium-ion battery anode[J]. Chemical Engineering Journal, 2022, 433: 134477. [28] LIN X S, SU H Z, HE S F, et al. In situ growth of graphene on both sides of a Cu-Ni alloy electrode for perovskite solar cells with improved stability[J]. Nature Energy, 2022, 7(6): 520-527. [29] ZHU J Y, ZHU Y X, ZHOU W J. Cu-doped Ni-LDH with abundant oxygen vacancies for enhanced methyl 4-hydroxybenzoate degradation via peroxymonosulfate activation: key role of superoxide radicals[J]. Journal of Colloid and Interface Science, 2022, 610: 504-517. |