[1] RUDRA S, SARKER S, KIM D M. Review on simulation of current-voltage characteristics of dye-sensitized solar cells[J]. Journal of Industrial and Engineering Chemistry, 2019, 80: 516-526. [2] IRFAN M, KHAN M I, IKRAM U H, et al. Effect of Fe ions beam on the structural, optical, photovoltaic properties of TiO2 based dye-sensitized solar cells[J]. Optical Materials, 2022, 123: 111794. [3] WU Z S, SONG X C, LIU Y D, et al. New organic dyes with varied arylamine donors as effective co-sensitizers for ruthenium complex N719 in dye sensitized solar cells[J]. Journal of Power Sources, 2020, 451: 227776. [4] DAS A, WARY R R, NAIR R G. Cu modified ZnO nanoflakes: an efficient visible light-driven photocatalyst and a promising photoanode for dye sensitized solar cell (DSSC)[J]. Solid State Sciences, 2020, 104: 106290. [5] 王东亭, 贾相晨, 钟道鹏. 染料敏化太阳能电池SNO2光阳极研究进展[J/OL].硅酸盐学报, 2024 [2024-05-15]. doi: 10.14062/j.issn.0454-5648.20230622. WANG D T, JIA X C, ZHONG D P. Research progress on SNO2 photoanode in dye sensitized solar cells [J/OL]. Journal of Ceramics. 2024 [2024-05-15]. doi: 10.14062/j.issn.0454-5648.20230622 (in Chinese). [6] 谭鸿钟, 高大海, 闫宝林, 等. 染料敏化太阳能电池TiO2光阳极的研究进展[J]. 激光与光电子学进展, 2023, 60(15): 3788/LOP223428. TAN H Z, GAO D H, YAN B L, et al. Research progress on dye-sensitized solar cells TiO2 photoanodes[J]. Laser & Optoelectronics Progress, 2023, 60(15): 3788/LOP223428 (in Chinese). [7] S K N, DAS A, KUMAR P M, et al. Effect of aspect ratio of c-axis oriented ZnO nanorods on photoelectrochemical performance and photoconversion efficiency[J]. Optical Materials, 2021, 121: 111551. [8] DAS A, NAIR R G. Fabrication of In2O3 functionalized ZnO based nanoheterojunction photoanode for improved DSSC performance through effective interfacial charge carrier separation[J]. Optical Materials, 2021, 122: 111784. [9] NI S M, WANG D B, GUO F Y, et al. Efficiency improvement of TiO2 nanowire arrays based dye-sensitized solar cells through further enhancing the specific surface area[J]. Journal of Crystal Growth, 2019, 505: 62-68. [10] SINGH M, KANAPARTHI R K. Theoretical exploration of 1, 3-Indanedione as electron acceptor-cum-anchoring group for designing sensitizers towards DSSC applications[J]. Solar Energy, 2022, 237: 456-469. [11] SOEDERGREN S, HAGFELDT A, OLSSON J, et al. Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells[J]. The Journal of Physical Chemistry, 1994, 98(21): 5552-5556. [12] BENKSTEIN K D, KOPIDAKIS N, VAN DE LAGEMAAT J, et al. Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells[J]. The Journal of Physical Chemistry B, 2003, 107(31): 7759-7767. [13] NI M, LEUNG M K H, LEUNG D Y C, et al. An analytical study of the porosity effect on dye-sensitized solar cell performance[J]. Solar Energy Materials and Solar Cells, 2006, 90(9): 1331-1344. [14] TRIPATHI B, YADAV P, KUMAR M. Charge transfer and recombination kinetics in dye-sensitized solar cell using static and dynamic electrical characterization techniques[J]. Solar Energy, 2014, 108: 107-116. [15] RAMESH S C, COLUMBUS C C, SHAJAN X S. Modeling and simulation of a dye sensitized solar cell with porous aerogel photoanode[J]. Journal of Electrical Engineering & Technology, 2021, 16(1): 509-514. [16] RAVAL D, TRIPATHI B, RAY A. Titanium dioxide nanorod diameter and layer porosity optimization by estimating electrical performance of dye and perovskite sensitized solar cell[J]. Journal of Porous Materials, 2017, 24(1): 217-231. [17] KUMAR D, KUCHHAL P, PARMAR K S. Optimization of photovoltaic conversion performance of a TiO2 based dye sensitized solar cells (DSSCs)[J]. Engineering Research Express, 2021, 3(4): 045021. [18] 程友良, 杨卫平. 染料敏化太阳能电池电子传输的数值模拟研究[J]. 新能源进展, 2020, 8(1): 68-74. CHENG Y L, YANG W P. Numerical simulation of electron transmission of dye-sensitized solar cells[J]. Advances in New and Renewable Energy, 2020, 8(1): 68-74 (in Chinese). [19] MALDON B J, LAMICHHANE B, THAMWATTANA N. Numerical solutions to a fractional diffusion equation used in modelling dye-sensitized solar cells[J]. ANZIAM Journal, 2021, 63: 420-433. [20] BARNES P R F, ANDERSON A Y, KOOPS S E, et al. Electron injection efficiency and diffusion length in dye-sensitized solar cells derived from incident photon conversion efficiency measurements[J]. The Journal of Physical Chemistry C, 2009, 113(3): 1126-1136. [21] KO J S, SASSIN M B, ROLISON D R, et al. Deconvolving double-layer, pseudocapacitance, and battery-like charge-storage mechanisms in nanoscale LiMn2O4 at 3D carbon architectures[J]. Electrochimica Acta, 2018, 275: 225-235. [22] WANG Y F, LI X F, LI D J, et al. Controllable synthesis of hierarchical SnO2 microspheres for dye-sensitized solar cells[J]. Journal of Power Sources, 2015, 280: 476-482. [23] 程友良, 集鑫锋, 刘 萌. 染料敏化太阳能电池载流子传输的数值模拟[J]. 人工晶体学报, 2022, 51(4): 687-694. CHENG Y L, JI X F, LIU M. Numerical simulation of carrier transmission in dye-sensitized solar cells[J]. Journal of Synthetic Crystals, 2022, 51(4): 687-694 (in Chinese). [24] 程友良, 王月坤, 杨卫平, 等. 染料敏化太阳能电池光阳极的优化与性能研究[J]. 新能源进展, 2018, 6(4): 304-313. CHENG Y L, WANG Y K, YANG W P, et al. Optimization and performance study of photoanode for dye-sensitized solar cells[J]. Advances in New and Renewable Energy, 2018, 6(4): 304-313 (in Chinese). |