[1] JIA K, WANG Y, PAN Q, et al. Enabling the electrocatalytic fixation of N2 to NH3 by C-doped TiO2 nanoparticles under ambient conditions[J]. Nanoscale Advances, 2019, 1(3): 961-964. [2] MU J J, GAO X W, LIU Z M, et al. Boosting nitrogen electrocatalytic fixation by three-dimensional TiO2-δNδ nanowire arrays[J]. Journal of Energy Chemistry, 2022, 75: 293-300. [3] AZOFRA L M, LI N, MACFARLANE D R, et al. Promising prospects for 2D d2-d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia[J]. Energy & Environmental Science, 2016, 9(8): 2545-2549. [4] ABGHOUI Y, GARDEN A L, HLYNSSON V F, et al. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design[J]. Physical Chemistry Chemical Physics, 2015, 17(7): 4909-4918. [5] ABGHOUI Y, GARDEN A L, HOWALT J G, et al. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: a DFT guide for experiments[J]. ACS Catalysis, 2016, 6(2): 635-646. [6] ZHANG R, ZHANG Y, REN X, et al. High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9545-9549. [7] ZHANG X P, KONG R M, DU H T, et al. Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions[J]. Chemical Communications, 2018, 54(42): 5323-5325. [8] YANG X, NASH J, ANIBAL J, et al. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles[J]. Journal of the American Chemical Society, 2018, 140(41): 13387-13391. [9] KANG S H, WANG J L, ZHANG S B, et al. Plasma-etching enhanced titanium oxynitride active phase with high oxygen content for ambient electrosynthesis of ammonia[J]. Electrochemistry Communications, 2019, 100: 90-95. [10] GUO C X, RAN J R, VASILEFF A, et al. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions[J]. Energy & Environmental Science, 2018, 11(1): 45-56. [11] WU G, SANTANDREU A, KELLOGG W, et al. Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition[J]. Nano Energy, 2016, 29: 83-110. [12] KUMAR C V S, SUBRAMANIAN V. Can boron antisites of BNNTs be an efficient metal-free catalyst for nitrogen fixation?-A DFT investigation[J]. Physical Chemistry Chemical Physics, 2017, 19(23): 15377-15387. [13] LI W Y, WU T X, ZHANG S B, et al. Nitrogen-free commercial carbon cloth with rich defects for electrocatalytic ammonia synthesis under ambient conditions[J]. Chemical Communications, 2018, 54(79): 11188-11191. [14] LIU Y M, SU Y, QUAN X, et al. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon[J]. ACS Catalysis, 2018, 8(2): 1186-1191. [15] QIU W B, XIE X Y, QIU J D, et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst[J]. Nature Communications, 2018, 9(1): 3485. [16] MARS P, VAN KREVELEN D W. Oxidations carried out by means of vanadium oxide catalysts[J]. Chemical Engineering Science, 1954, 3: 41-59. [17] YANG Y L, LIU J D, WEI Z X, et al. Transition metal-dinitrogen complex embedded graphene for nitrogen reduction reaction[J]. ChemCatChem, 2019, 11(12): 2821-2827. [18] CAI L J, ZHANG N, QIU B C, et al. Computational design of transition metal single-atom electrocatalysts on PtS2 for efficient nitrogen reduction[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20448-20455. [19] BRAUER G, REUTHER H. Phasen des ternären systems vanadium-stickstoff-sauerstoff[J]. Zeitschrift Für Anorganische und Allgemeine Chemie, 1973, 395(2/3): 151-158. [20] YU H J, WANG Z Q, YANG D D, et al. Bimetallic Ag3Cu porous networks for ambient electrolysis of nitrogen to ammonia[J]. Journal of Materials Chemistry A, 2019, 7(20): 12526-12531. [21] SU J F, ZHAO H Y, FU W W, et al. Fine rhodium phosphides nanoparticles embedded in N, P dual-doped carbon film: new efficient electrocatalysts for ambient nitrogen fixation[J]. Applied Catalysis B: Environmental, 2020, 265: 118589. [22] CHU K, LIU YP, LI Y B, et al. Efficient electrocatalytic N2 reduction on CoO quantum dots[J]. Journal of Materials Chemistry A, 2019, 9: 4389-4394. [23] XIANG X J, WANG Z, SHI X F, et al. Ammonia synthesis from electrocatalytic N2 reduction under ambient conditions by Fe2O3 nanorods[J]. ChemCatChem, 2018, 10(20): 4530-4535. [24] ZHANG X X, WU T W, WANG H B, et al. Boron nanosheet: an elemental two-dimensional (2D) material for ambient electrocatalytic N2-to-NH3 fixation in neutral media[J]. ACS Catal, 2019, 9(5): 4609-4615. [25] KUMAR R D, WANG Z Q, LI C J, et al. Trimetallic PdCuIr with long-spined sea-urchin-like morphology for ambient electroreduction of nitrogen to ammonia[J]. Journal of Materials Chemistry A, 2019, 7: 3190-3196. [26] LI L Q, TANG C, XIA B Q, et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction[J]. ACS Catal, 2019, 9(4): 2902-2908. [27] ZHANG Y, QIU W B, MA Y J, et al. High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions[J]. ACS Catalysis, 2018, 8(9): 8540-8544. [28] WANG B, CHAKOUMAKOS B C, SALES B C, et al. Synthesis, crystal structure, electrical, magnetic, and electrochemical lithium intercalation properties of vanadium oxynitrides[J]. Journal of Solid State Chemistry, 1996, 122(2): 376-383. [29] LUMEY M W, DRONSKOWSKI R. First-principles electronic structure, chemical bonding, and high-pressure phase prediction of the oxynitrides of vanadium, niobium, and tantalum[J]. Zeitschrift Für Anorganische und Allgemeine Chemie, 2005, 631(5): 887-893. [30] SCOPEL W L, FANTINI M C A, ALAYO M I, et al. Local structure and bonds of amorphous silicon oxynitride thin films[J]. Thin Solid Films, 2002, 413(1/2): 59-64. |