[1] 张瑞洋. 标准助力双碳 绿色引领未来: 2022年绿色低碳标准化交流会召开[J]. 中国标准化, 2022(16): 6-18. ZHANG R Y. Standards help double carbon green lead the future: 2022 green and low carbon standardization exchange conference held[J]. China Standardization, 2022(16): 6-18 (in Chinese). [2] PARDO-BOSCH F, BLANCO A, SESÉ E, et al. Sustainable strategy for the implementation of energy efficient smart public lighting in urban areas: case study in San Sebastian[J]. Sustainable Cities and Society, 2022, 76: 103454. [3] CHIATTI C, ROSSO F, FABIANI C, et al. Integrated energy performance of an innovative translucent photoluminescent building envelope for lighting energy storage[J]. Sustainable Cities and Society, 2021, 75: 103234. [4] DELGADO T, AFSHANI J, HAGEMANN H. Spectroscopic study of a single crystal of SrAl2O4:Eu2+:Dy3+[J]. The Journal of Physical Chemistry C, 2019, 123(14): 8607-8613. [5] WALFORT B, GARTMANN N, AFSHANI J, et al. Effect of excitation wavelength (blue vs near UV) and dopant concentrations on afterglow and fast decay of persistent phosphor SrAl2O4:Eu2+, Dy3+[J]. Journal of Rare Earths, 2022, 40(7): 1022-1028. [6] WATARI T, TSUJI T, MORI K, et al. Fabrication and characterization of calcium silicate phosphors- Ca2SiO4 and Ca2MgSi2O7[J]. Materials Science Forum, 2013, 761: 59-64. [7] UEDA J, SHINODA T, TANABE S. Photochromism and near-infrared persistent luminescence in Eu2+-Nd3+-co-doped CaAl2O4 ceramics[J]. Optical Materials Express, 2013, 3(6): 787. [8] FERNÁNDEZ-RODRÍGUEZ L, LEVY D, ZAYAT M, et al. Processing and luminescence of Eu/Dy-doped Sr2MgSi2O7 glass-ceramics[J]. Journal of the European Ceramic Society, 2021, 41(1): 811-822. [9] DU H L, SHAN W F, WANG L Y, et al. Optimization and complexing agent-assisted synthesis of green SrAl2O4:Eu2+, Dy3+ phosphors through sol-gel process[J]. Journal of Luminescence, 2016, 176: 272-277. [10] 安 欣, 岳 杨, 朱楠楠, 等. SrAl2O4:Eu2+, Dy3+, Tm3+荧光材料的光激励诱导长余辉特性及其防伪应用[J]. 发光学报, 2023, 44(11): 1931-1939. AN X, YUE Y, ZHU N N, et al. Photo-stimulated long afterglow of SrAl2O4:Eu2+, Dy3+, Tm3+ and its anti-counterfeit applications[J]. Chinese Journal of Luminescence, 2023, 44(11): 1931-1939 (in Chinese). [11] LI P P, HUA Y J, YE R G, et al. SrAl2O4 crystallite embedded inorganic medium with super-long persistent luminescence, thermoluminescence, and photostimulable luminescence for smart optical information storage[J]. Photonics Research, 2022, 10(2): 381. [12] 路大勇. 钛酸钡介电陶瓷中变价稀土离子的价态鉴定及缺陷化学的研究进展[J]. 吉林化工学院学报, 2018, 35(7): 8-13. LU D Y. Advances in identifications of valence-variable rare-earth ions in BaiO3 ceramics and in defect chemistry[J]. Journal of Jilin Institute of Chemical Technology, 2018, 35(7): 8-13 (in Chinese). [13] ZYCH E, TROJAN-PIEGZA J, HRENIAK D, et al. Properties of Tb-doped vacuum-sintered Lu2O3 storage phosphor[J]. Journal of Applied Physics, 2003, 94(3): 1318-1324. [14] 李胜男. 铽掺杂C12A7基X射线影像存储荧光粉的制备及其发光机理研究[D]. 长春: 东北师范大学, 2017. LI S N. Preparation and luminescence mechanism of terbium-doped C12A7-based X-ray image storage phosphor[D]. Changchun: Northeast Normal University, 2017 (in Chinese). [15] JAMALAIAH B C, MADHU N. Luminescence properties of SrAl2O4:Tb3+/Bi3+ nanophosphors for photonic applications[J]. Journal of Molecular Structure, 2020, 1205: 127599. [16] CALDIÑO U, MUÑOZ H G, CAMARILLO I, et al. Down-shifting by energy transfer in Tb3+/Dy3+ Co-doped zinc phosphate glasses[J]. Journal of Luminescence, 2015, 161: 142-146. [17] FANG L Z, ZHOU X, ZHANG J L, et al. Control of white light emission via co-doping of Dy3+ and Tb3+ ions in LiLuF4 single crystals under UV excitation[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(4): 3405-3414. [18] FAWAD U, KIM H J, KHAN M. Emission analysis of Li6LuY(BO3)3:Tb3+, Dy3+ phosphors[J]. Radiation Measurements, 2016, 90: 319-324. [19] VELÁZQUEZ J J, RODRÍGUEZ V D, YANES A C, et al. Increase in the Tb3+ green emission in SiO2-LaF3 nano-glass-ceramics by codoping with Dy3+ ions[J]. Journal of Applied Physics, 2010, 108(11): 113530. [20] JAMALAIAH B C, VENKATRAMAIAH N, RAO T S, et al. UV excited SrAl2O4:Tb3+ nanophosphors for photonic applications[J]. Materials Science in Semiconductor Processing, 2020, 105: 104722. [21] LAKSHMINARAYANA G, KAKY K M, BAKI S O, et al. Optical absorption, luminescence, and energy transfer processes studies for Dy3+/Tb3+-codoped borate glasses for solid-state lighting applications[J]. Optical Materials, 2017, 72: 380-391. [22] RÓŻOWICZ A, WACHTA H, BARAN K, et al. Arrangement of LEDs and their impact on thermal operating conditions in high-power luminaires[J]. Energies, 2022, 15(21): 8142. [23] 颜稳萍. 基于温压法的LED结温测试方法研究[J]. 光源与照明, 2023(10): 94-96. YAN W P. Research on LED junction temperature measurement method based on warm-pressure method[J]. Lamps & Lighting, 2023(10): 94-96 (in Chinese). [24] JUNG E D, LEE Y L. Development of a heat dissipating LED headlamp with silicone lens to replace halogen bulbs in used cars[J]. Applied Thermal Engineering, 2015, 86: 143-150. [25] CAI M, LIANG Z, TIAN K M, et al. Junction temperature prediction for LED luminaires based on a subsystem-separated thermal modeling method[J]. IEEE Access, 2019, 7: 119755-119764. |