人工晶体学报 ›› 2025, Vol. 54 ›› Issue (6): 924-934.DOI: 10.16553/j.cnki.issn1000-985x.2024.0272
杨再洪1,2(), 周灿2, 范柳燕2, 张燕辉2, 陈泽中1(
), 陈平平2
收稿日期:
2024-11-01
出版日期:
2025-06-20
发布日期:
2025-06-23
通信作者:
陈泽中,博士,副教授。E-mail:作者简介:
杨再洪(1999—),男,贵州省人,硕士研究生。E-mail:zaihongy@163.com
基金资助:
YANG Zaihong1,2(), ZHOU Can2, FAN Liuyan2, ZHANG Yanhui2, CHEN Zezhong1(
), CHEN Pingping2
Received:
2024-11-01
Online:
2025-06-20
Published:
2025-06-23
摘要: 最近几年,人工智能在材料领域得到广泛应用,机器学习在分子束外延(MBE)技术中的应用引人关注。基于原位反射高能电子衍射(RHEED)及相关物性的智能识别和反馈的MBE技术,能够显著提升生长材料的质量和生长效率,有望实现薄膜的MBE智能外延。本综述聚焦机器学习MBE中的应用研究,首先介绍了MBE中常用的机器学习算法模型,阐述了机器学习在优化MBE生长条件中的应用,着重总结了不同材料体系(半导体薄膜和量子结构材料、氧化物材料和二维材料等)基于RHEED图像机器学习的研究进展,并就存在的问题和未来的发展策略进行了总结展望。
中图分类号:
杨再洪, 周灿, 范柳燕, 张燕辉, 陈泽中, 陈平平. 机器学习在分子束外延生长的应用进展[J]. 人工晶体学报, 2025, 54(6): 924-934.
YANG Zaihong, ZHOU Can, FAN Liuyan, ZHANG Yanhui, CHEN Zezhong, CHEN Pingping. Research Progress on Application of Machine Learning in Molecular Beam Epitaxy Growth[J]. Journal of Synthetic Crystals, 2025, 54(6): 924-934.
Algorithmic model | Peculiarity | Reference |
---|---|---|
Random forest | It can process a large amount of data and high-dimensional features, is not easy to overfit, and is robust to missing data. But the training time is long, and the interpretability of the model is relatively poor. | [ |
K-means clustering | Simple, easy to understand and implement, suitable for large-scale datasets. But it is sensitive to the initial clustering center and converges to the local optimal solution. | [ |
Hierarchical clustering | Ability to organize and present information clearly, making complex concepts and relationships easier to understand and remember. But it can be an oversimplification of complex realities, leading to some information being overlooked or misunderstood. | [ |
Nonnegative matrix factorization | The latent features in the data can be extracted.But the computational complexity is high, and it is easy to fall into the local optimal solution. | [ |
Convolutional neural network | It can effectively process two-dimensional data such as images and videos, and has the characteristics of parameter sharing and local connection, which is suitable for extracting spatial features. But the training time is long, the model is poorly interpretable, and it is easy to overfit and other problems. | [ |
Support vector machine | Able to process high-dimensional data, has good generalization ability, performs well for small-sample data.But has high computational complexity for large-scale datasets, and is sensitive to missing data. | [ |
Principal components analysis | It can reduce data dimensions, remove noise and redundant information, improve model efficiency, and more. But some information may be lost, sensitivity to outliers, etc. | [ |
Uniform manifold approximation and projection | It has a good ability to express the data of nonlinear structure, and has a fast calculation speed. But the processing capacity for ultra-large-scale data is relatively weak. | [ |
Logistic regression | It is suitable for binary classification problems, which is fast to computation, easy to explain and implement.But it is not suitable for nonlinear relationships and is susceptible to outliers. | [ |
Naive bayes | The model is simple, computationally efficient, and performs well with small-scale data. But the conditional independence of the input data is more stringent, and when the assumption is not true, the classification results will be affected. | [ |
表1 MBE技术中常见的机器学习算法模型
Table 1 Common machine learning algorithm models in MBE technology
Algorithmic model | Peculiarity | Reference |
---|---|---|
Random forest | It can process a large amount of data and high-dimensional features, is not easy to overfit, and is robust to missing data. But the training time is long, and the interpretability of the model is relatively poor. | [ |
K-means clustering | Simple, easy to understand and implement, suitable for large-scale datasets. But it is sensitive to the initial clustering center and converges to the local optimal solution. | [ |
Hierarchical clustering | Ability to organize and present information clearly, making complex concepts and relationships easier to understand and remember. But it can be an oversimplification of complex realities, leading to some information being overlooked or misunderstood. | [ |
Nonnegative matrix factorization | The latent features in the data can be extracted.But the computational complexity is high, and it is easy to fall into the local optimal solution. | [ |
Convolutional neural network | It can effectively process two-dimensional data such as images and videos, and has the characteristics of parameter sharing and local connection, which is suitable for extracting spatial features. But the training time is long, the model is poorly interpretable, and it is easy to overfit and other problems. | [ |
Support vector machine | Able to process high-dimensional data, has good generalization ability, performs well for small-sample data.But has high computational complexity for large-scale datasets, and is sensitive to missing data. | [ |
Principal components analysis | It can reduce data dimensions, remove noise and redundant information, improve model efficiency, and more. But some information may be lost, sensitivity to outliers, etc. | [ |
Uniform manifold approximation and projection | It has a good ability to express the data of nonlinear structure, and has a fast calculation speed. But the processing capacity for ultra-large-scale data is relatively weak. | [ |
Logistic regression | It is suitable for binary classification problems, which is fast to computation, easy to explain and implement.But it is not suitable for nonlinear relationships and is susceptible to outliers. | [ |
Naive bayes | The model is simple, computationally efficient, and performs well with small-scale data. But the conditional independence of the input data is more stringent, and when the assumption is not true, the classification results will be affected. | [ |
图2 (a)RHEED图案;(b)AFM照片;(c)θ-2θ扫描XRD图谱;(d)具有50~52的RRR的SrRuO3薄膜的截面HAADF-STEM图像;(e)图(d)中界面附近的放大图像;(f)图(e)中界面附近的放大图像[34]
Fig.2 (a) RHEED pattern; (b) AFM image; (c) θ-2θ scanned XRD pattern; (d) cross-sectional HAADF-STEM image of the SrRuO3 thin film with the RRR of 50~52; (e) magnified image near the interface in Fig.(d); (f) magnified image near the interface in Fig.(e)[34]
图6 包括卷积神经网络和全连接层的RHEED模式多类分类别模型[42]
Fig.6 RHEED model multiclass classification model includes convolutional neural network and fully connected layer[42]
图8 (a)对于TbScO3上的SrTiO3,K均值聚类高达K=7;(b)每个聚类中的平均代表图像;(c)每个K值绘制的K均值最小化函数[45]
Fig.8 (a) K-means clustering up to K = 7 for SrTiO3 on TbScO3; (b) mean representative images in each cluster; (c) K-means minimization function plotted for each value of K[45]
图9 LAO的NMF等级为4。(a)~(d)四个簇的相应系数图;(e)~(h)四个簇的相应基础图[47]
Fig.9 NMF with rank 4 for LAO. (a)~(d) corresponding coefficient plots for the four clusters; (e)~(h) corresponding basis plots for the four clusters[47]
图10 PCA结果。(a)RHEED视频的6个PC。PC1显示石墨烯的衍射信号,PC2包含石墨烯和ReSe 2层两者的信号,PC3-6仅示出了ReSe2层的2D生长的信号;(b)相应的得分图;(c)原始RHEED图像强度;(d)~(e)修改后的RHEED视频的强度图。蓝色和橙色线分别表示ReSe2薄膜的(0,0)和(2,0)衍射条纹(如插图所示)[50]
Fig.10 PCA results. (a) Six PCs of the RHEED video for the 3UC-thick-ReSe2 thin film, PC1 shows the diffraction signal of graphene, PC2 contains the signals of both the graphene and -ReSe2 layers, PC3-6 show the signal of only the 2D growth of ReSe2 layer; (b) corresponding score plots; (c) original RHEED video; (d)~(e) modified RHEED video. Blue and orange lines denote the (0,0) and (2,0) diffraction streaks of the ReSe2 thin film (shown in the inset), respectively[50]
1 | GUPTA V, LIAO W K, CHOUDHARY A, et al. Evolution of artificial intelligence for application in contemporary materials science[J]. MRS Communications, 2023, 13(5): 754-763. |
2 | ABOLHASANI M, BROWN K A, EDITORS G. Role of AI in experimental materials science[J]. MRS Bulletin, 2023, 48(2): 134-141. |
3 | JAIN A. Machine learning in materials research: developments over the last decade and challenges for the future[J]. Current Opinion in Solid State and Materials Science, 2024, 33: 101189. |
4 | BUTLER K T, DAVIES D W, CARTWRIGHT H, et al. Machine learning for molecular and materials science[J]. Nature, 2018, 559(7715): 547-555. |
5 | BATRA R, SONG L, RAMPRASAD R. Emerging materials intelligence ecosystems propelled by machine learning[J]. Nature Reviews Materials, 2020, 6(8): 655-678. |
6 | HENINI M. Molecular beam epitaxy: from research to manufacturing[J]. Thin Solid Films, 1997, 306(2): 331-337. |
7 | CHENG K Y. Development of molecular beam epitaxy technology for III-V compound semiconductor heterostructure devices[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013, 31(5): 050814. |
8 | DZIWOKI A, BLYZNIUK B, FREINDL K, et al. The use of external fields (magnetic, electric, and strain) in molecular beam epitaxy-the method and application examples[J]. Molecules, 2024, 29(13): 3162. |
9 | BRAHLEK M, LAPANO J, LEE J S. Topological materials by molecular beam epitaxy[J]. Journal of Applied Physics, 2020, 128(21): 210902. |
10 | BAUER G, SPRINGHOLZ G. Molecular beam epitaxy: aspects and applications[J]. Vacuum, 1992, 43(5/6/7): 357-365. |
11 | HAFEZ M A, ZAYED M K, ELSAYED-ALI H E. Review: geometric interpretation of reflection and transmission RHEED patterns[J]. Micron, 2022, 159: 103286. |
12 | MITURA Z, SZCZYPIŃSKI M M, MITURA S. Discussion of the importance of the refraction effects for RHEED[J]. Applied Surface Science, 2017, 421: 247-251. |
13 | FOXON C T. Control of MBE, MOMBE and CBE growth using RHEED[J]. Applied Surface Science, 1991, 50(1/2/3/4): 28-33. |
14 | 王继红, 罗子江, 周 勋, 等. RHEED衍射花样与晶体表面形貌的关联性研究[J]. 贵州大学学报(自然科学版), 2013, 30(2): 73-76. |
WANG J H, LUO Z J, ZHOU X, et al. Correlation study between RHEED diffraction patterns and crystal surface morphology[J]. Journal of Guizhou University (Natural Sciences), 2013, 30(2): 73-76 (in Chinese). | |
15 | GONZÁLEZ V I, GALLÉ G, ARNAUD B, et al. Observation of large multiple scattering effects in ultrafast electron diffraction on monocrystalline silicon[J]. Physical Review B, 2018, 97(5): 054302. |
16 | VASUDEVAN R K, GIANFRANCESCO A G, BADDORF A P, et al. Full information acquisition and analysis of reflection high energy electron diffraction data for epitaxial growth processes[J]. Microscopy and Microanalysis, 2016, 22(S3): 376-377. |
17 | MITCHELL T M. Machine learning[M]. New Yorks: McGraw-Hill, 1997. |
18 | KELLIHER A. Machines learning culture[J]. IEEE MultiMedia, 2015, 22(2): 18-22. |
19 | SEREY J, QUEZADA L, ALFARO M, et al. Artificial intelligence methodologies for data management[J]. Symmetry, 2021, 13(11): 2040. |
20 | BOTVINICK M, RITTER S, WANG J X, et al. Reinforcement learning, fast and slow[J]. Trends in Cognitive Sciences, 2019, 23(5): 408-422. |
21 | GENUER R, POGGI J M, TULEAU-MALOT C, et al. Random forests for big data[J]. Big Data Research, 2017, 9: 28-46. |
22 | MANTERO A, ISHWARAN H. Unsupervised random forests[J]. Statistical Analysis and Data Mining: the ASA Data Science Journal, 2021, 14(2): 144-167. |
23 | YU H, WEN G Q, GAN J Z, et al. Self-paced learning for K-means clustering algorithm[J]. Pattern Recognition Letters, 2020, 132: 69-75. |
24 | WANG B S, BARBU A. Hierarchical classification for large-scale learning[J]. Electronics, 2023, 12(22): 4646. |
25 | HUANG Q, YIN X S, CHEN S C, et al. Robust nonnegative matrix factorization with structure regularization[J]. Neurocomputing, 2020, 412: 72-90. |
26 | CHEN F H, LI S L, HAN J L, et al. Review of lightweight deep convolutional neural networks[J]. Archives of Computational Methods in Engineering, 2024, 31(4): 1915-1937. |
27 | LI Z W, LIU F, YANG W J, et al. A survey of convolutional neural networks: analysis, applications, and prospects[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12): 6999-7019. |
28 | TAVARA S. Parallel computing of support vector machines: a survey[J]. ACM Computing Surveys, 2019, 51(6): 1-38. |
29 | GEWERS F L, FERREIRA G R, DE-ARRUDA H F, et al. Principal component analysis: a natural approach to data exploration[J]. ACM Computing Surveys, 2021, 54(4): 1-34. |
30 | MCINNES L, HEALY J, SAUL N, et al. UMAP: uniform manifold approximation and projection[J]. Journal of Open Source Software, 2018, 3(29): 861. |
31 |
SPERANDEI S. Understanding logistic regression analysis[J]. Biochemia Medica, 2014, 24(1): 12-18.
DOI PMID |
32 | CHEN S L, WEBB G I, LIU L Y, et al. A novel selective naïve Bayes algorithm[J]. Knowledge-Based Systems, 2020, 192: 105361. |
33 | YU L J, GAN S F, CHEN Y, et al. Correlation-based weight adjusted naive Bayes[J]. IEEE Access, 2020, 8: 51377-51387. |
34 | WAKABAYASHI Y K, OTSUKA T, KROCKENBERGER Y, et al. Machine-learning-assisted thin-film growth: Bayesian optimization in molecular beam epitaxy of SrRuO3 thin films[J]. APL Materials, 2019, 7(10): 101114. |
35 | OHKUBO I, HOU Z, LEE J N, et al. Realization of closed-loop optimization of epitaxial titanium nitride thin-film growth via machine learning[J]. Materials Today Physics, 2021, 16: 100296. |
36 | MESSECAR A S, DURBIN S M, MAKIN R A. Quantum and classical machine learning investigation of synthesis-structure relationships in epitaxially grown wide band gap semiconductors[J]. MRS Communications, 2024, 14(4): 660-666. |
37 | SHEN C, ZHAN W K, TANG J, et al. Universal deoxidation of semiconductor substrates assisted by machine learning and real-time feedback control[J]. ACS Applied Materials & Interfaces, 2024, 16(14): 18213-18221. |
38 | NOH Y K, NOH H K, PARK B G, et al. Hybrid NH3/N2 molecular beam epitaxy with artificial-intelligence-assisted reflection high-energy electron diffraction analysis[J]. InInternational Conference on Compound Semiconductor Manufacturing Technology, 2021: 24-27. |
39 | KHAIREH-WALIEH A, ARNOULT A, PLISSARD S, et al. Monitoring MBE substrate deoxidation via RHEED image-sequence analysis by deep learning[J]. Crystal Growth and Design, 2023, 23(2): 892-898. |
40 | KWOEN J, ARAKAWA Y. Classification of reflection high-energy electron diffraction pattern using machine learning[J]. Crystal Growth & Design, 2020, 20(8): 5289-5293. |
41 | KWOEN J, ARAKAWA Y. Classification of in situ reflection high energy electron diffraction images by principal component analysis[J]. Japanese Journal of Applied Physics, 2021, 60: SBBK03. |
42 | KWOEN J, ARAKAWA Y. Multiclass classification of reflection high-energy electron diffraction patterns using deep learning[J]. Journal of Crystal Growth, 2022, 593: 126780. |
43 |
SHEN C, ZHAN W K, XIN K Y, et al. Machine-learning-assisted and real-time-feedback-controlled growth of InAs/GaAs quantum dots[J]. Nature Communications, 2024, 15(1): 2724.
DOI PMID |
44 | ANJUM S, LEE H Y, NOH H K. Rotation error detection of gallium nitride (GaN) substrate in MBE utilizing ensemble learning[J]. Crystal Growth & Design, 2023, 23(6): 4138-4146. |
45 | PROVENCE S R, THAPA S, PAUDEL R, et al. Machine learning analysis of perovskite oxides grown by molecular beam epitaxy[J]. Physical Review Materials, 2020, 4(8): 083807. |
46 |
VASUDEVAN R K, TSELEV A, BADDORF A P, et al. Big-data reflection high energy electron diffraction analysis for understanding epitaxial film growth processes[J]. ACS Nano, 2014, 8(10): 10899-10908.
DOI PMID |
47 | GLIEBE K, SEHIRLIOGLU A. Distinct thin film growth characteristics determined through comparative dimension reduction techniques[J]. Journal of Applied Physics, 2021, 130(12): 125301. |
48 | LIANG H T, STANEV V, KUSNE A G, et al. Application of machine learning to reflection high-energy electron diffraction images for automated structural phase mapping[J]. Physical Review Materials, 2022, 6(6): 063805. |
49 | SCHAEFER S, FEBBA D, EGBO K, et al. Rapid screening of molecular beam epitaxy conditions for monoclinic (In x Ga1- x )2O3 alloys[J]. Journal of Materials Chemistry A, 2024, 12(9): 5508-5519. |
50 |
KIM H J, CHONG M S, RHEE T G, et al. Machine-learning-assisted analysis of transition metal dichalcogenide thin-film growth[J]. Nano Convergence, 2023, 10(1): 10.
DOI PMID |
51 | YOSHINARI A, IWASAKI Y, KOTSUGI M, et al. Skill-Agnostic analysis of reflection high-energy electron diffraction patterns for Si(111) surface superstructures using machine learning[J]. Science and Technology of Advanced Materials: Methods, 2022, 2(1): 162-174. |
52 | PRICE C C, LI Y S, ZHOU G Y, et al. Predicting and accelerating nanomaterials synthesis using machine learning featurization[J]. Nano Letters, 2024: 4c04500. |
53 | CHONG M S, RHEE T G, KHIM Y G, et al. Machine-learning-empowered identification of initial growth modes for 2D transition metal dichalcogenide thin films[J]. Applied Surface Science, 2024, 669: 160547. |
[1] | 储冬冬, 杨志华, 潘世烈. 数据驱动的新型非线性光学材料理论设计研究进展[J]. 人工晶体学报, 2024, 53(9): 1475-1493. |
[2] | 陈峰武, 吕文利, 龚欣, 薛勇, 巩小亮. 分子束外延设备国内外进展及展望[J]. 人工晶体学报, 2024, 53(9): 1494-1503. |
[3] | 顾鹏, 雷沛, 叶帅, 胡晋, 吴戈. 顶部籽晶溶液法生长碳化硅单晶及其关键问题研究进展[J]. 人工晶体学报, 2024, 53(5): 741-759. |
[4] | 赵军一, 刘润泽, 楼逸扬, 霍永恒. 确定性固态量子光源基础材料与器件[J]. 人工晶体学报, 2023, 52(6): 960-981. |
[5] | 宋长坤, 黄晓莹, 陈英鑫, 喻颖, 余思远. 半导体单量子点的分子束外延生长及调控[J]. 人工晶体学报, 2023, 52(6): 982-996. |
[6] | 李秉欣, 丁元丰, 芦红. 单晶α-Sn薄膜的外延生长及输运性质研究进展[J]. 人工晶体学报, 2023, 52(6): 1025-1035. |
[7] | 隋占仁, 徐凌波, 崔灿, 王蓉, 杨德仁, 皮孝东, 韩学峰. 数值模拟顶部籽晶溶液生长法制备单晶碳化硅的研究进展[J]. 人工晶体学报, 2023, 52(6): 1067-1085. |
[8] | 梁潇, 李思琦, 王中伟, 邵鹏飞, 陈松林, 陶涛, 谢自力, 刘斌, 陈敦军, 郑有炓, 张荣, 王科. 分子束外延高Al组分AlGaN薄膜及Si掺杂研究[J]. 人工晶体学报, 2023, 52(5): 783-790. |
[9] | 刘欢, 邵鹏飞, 陈松林, 周辉, 李思琦, 陶涛, 谢自力, 刘斌, 陈敦军, 郑有炓, 张荣, 王科. 金属调制分子束外延生长氮化铝薄膜[J]. 人工晶体学报, 2023, 52(5): 878-885. |
[10] | 任怡静, 马新国, 张锋, 陆晶晶, 张力, 王晗. BaTiO3薄膜的制备及其在电光调制器的应用[J]. 人工晶体学报, 2023, 52(4): 688-700. |
[11] | 谢景龙, 袁国文, 廖俊杰, 潘睿, 樊星, 张微微, 袁紫媛, 李晨, 高力波, 芦红. 石墨烯上远程外延Ge纳米柱[J]. 人工晶体学报, 2022, 51(9-10): 1769-1776. |
[12] | 蔡文为, 刘祥炜, 王浩, 汪建元, 郑力诚, 王永嘉, 周颖慧, 杨旭, 李金钗, 黄凯, 康俊勇. 生长气压对分子束外延β-Ga2O3薄膜特性的影响[J]. 人工晶体学报, 2022, 51(7): 1152-1157. |
[13] | 常梦琳, 樊星, 张微微, 姚金山, 潘睿, 李晨, 芦红. 利用Al/AlAs中间层调控GaAs在Si(111)上外延生长的研究[J]. 人工晶体学报, 2022, 51(11): 1815-1822. |
[14] | 蒋冲, 王一, 丁召, 黄延彬, 罗子江, 李志宏, 李耳士, 郭祥. 分子束外延生长过程中GaAs(001)表面铝液滴的扩散成核过程[J]. 人工晶体学报, 2021, 50(2): 283-289. |
[15] | 王一, 李志宏, 丁召, 杨晨, 罗子江, 王继红, 郭祥. 基于液滴外延法的Al(In)纳米结构在GaAs(001)的形成机制[J]. 人工晶体学报, 2021, 50(12): 2225-2231. |
阅读次数 | ||||||
全文 55
|
|
|||||
摘要 73
|
|
|||||