欢迎访问《人工晶体学报》官方网站,今天是 2025年8月13日 星期三 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (6): 924-934.DOI: 10.16553/j.cnki.issn1000-985x.2024.0272

• 综合评述 • 上一篇    下一篇

机器学习在分子束外延生长的应用进展

杨再洪1,2(), 周灿2, 范柳燕2, 张燕辉2, 陈泽中1(), 陈平平2   

  1. 1.上海理工大学材料与化学学院,上海 200093
    2.中国科学院上海技术物理研究所红外科学与技术全国重点实验室,上海 200083
  • 收稿日期:2024-11-01 出版日期:2025-06-20 发布日期:2025-06-23
  • 通信作者: 陈泽中,博士,副教授。E-mail:zzhchen@usst.edu.cn
  • 作者简介:杨再洪(1999—),男,贵州省人,硕士研究生。E-mail:zaihongy@163.com
  • 基金资助:
    国家自然科学基金(12027805);中国科学院专项(GJ0090406)

Research Progress on Application of Machine Learning in Molecular Beam Epitaxy Growth

YANG Zaihong1,2(), ZHOU Can2, FAN Liuyan2, ZHANG Yanhui2, CHEN Zezhong1(), CHEN Pingping2   

  1. 1.School of Materials and Chemistry,University of Shanghai for Science and Technology,Shanghai 200093,China
    2.State Key Laboratory of Infrared Physics,Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China
  • Received:2024-11-01 Online:2025-06-20 Published:2025-06-23

摘要: 最近几年,人工智能在材料领域得到广泛应用,机器学习在分子束外延(MBE)技术中的应用引人关注。基于原位反射高能电子衍射(RHEED)及相关物性的智能识别和反馈的MBE技术,能够显著提升生长材料的质量和生长效率,有望实现薄膜的MBE智能外延。本综述聚焦机器学习MBE中的应用研究,首先介绍了MBE中常用的机器学习算法模型,阐述了机器学习在优化MBE生长条件中的应用,着重总结了不同材料体系(半导体薄膜和量子结构材料、氧化物材料和二维材料等)基于RHEED图像机器学习的研究进展,并就存在的问题和未来的发展策略进行了总结展望。

关键词: 分子束外延; 机器学习; 反射高能电子衍射; Ⅲ-Ⅴ族半导体材料; 人工智能

Abstract: In recent years, artificial intelligence has been widely applied in the field of materials, and the application of machine learning in molecular beam epitaxy (MBE) has attracted attention. Intelligent recognition and feedback based on in-situ reflection high-energy electron diffraction (RHEED) and related material properties in MBE technology can significantly improve the quality and efficiency of material growth, leading to the realization of intelligent epitaxy of epitaxial films. This article focuses on the application of machine learning in MBE. It first introduces commonly used machine learning algorithm models in MBE, and explains the application of machine learning in optimizing growth conditions and specifically summarizes the research progress on machine learning based on RHEED images for different material systems (semiconductor thin films and quantum structure materials, oxide materials, and two-dimensional materials). A summary and outlook were provided on the existing problems and future development strategies.

Key words: molecular beam epitaxy; machine learning; reflection high-energy electron diffraction; Ⅲ-Ⅴ semiconductor material; artificial intelligence

中图分类号: