1 |
GODARD A. Infrared (2-12 μm) solid-state laser sources: a review[J]. Comptes Rendus Physique, 2007, 8(10): 1100-1128.
|
2 |
NIE H K, SHI B N, XIA H P, et al. High-repetition-rate kHz electro-optically Q-switched Ho, Pr∶YLF 2.9 µm bulk laser[J]. Optics Express, 2018, 26(26): 33671-33677.
|
3 |
MARTYSHKIN D, FEDOROV V, HAMLIN S J, et al. 350 mJ electro-optically Q-switched 2.79 µm Cr∶Er∶YSGG MOPA[J]. Optics Express, 2023, 31(11): 18525-18532.
|
4 |
NIE H K, WANG F F, LIU J T, et al. Rare-earth ions-doped mid-infrared (2.7-3 µm) bulk lasers: a review[J]. Chinese Optics Letters, 2021, 19(9): 091407.
|
5 |
WALSH B M, LEE H R, BARNES N P. Mid infrared lasers for remote sensing applications[J]. Journal of Luminescence, 2016, 169: 400-405.
|
6 |
HU Q Q, NIE H K, MU W X, et al. Bulk growth and an efficient mid-IR laser of high-quality Er∶YSGG crystals[J]. CrystEngComm, 2019, 21(12): 1928-1933.
|
7 |
NEWBURGH G A, DUBINSKII M. Power and efficiency scaling of Er∶ZBLAN fiber laser[J]. Laser Physics Letters, 2021, 18(9): 095102.
|
8 |
POLLACK S A, CHANG D B. Upconversion-pumped population kinetics for 4I13/2 and 4I11/2 laser states of Er3+ ion in several host crystals[J]. Optical and Quantum Electronics, 1990, 22(1): S75-S93.
|
9 |
CHEN J K, SUN D L, LUO J Q, et al. Spectroscopic properties and diode end-pumped 2.79 μm laser performance of Er, Pr∶GYSGG crystal[J]. Optics Express, 2013, 21(20): 23425-23432.
|
10 |
MA W W, SU L B, XU X D, et al. Improved 2.79 μm continuous-wave laser performance from a diode-end pumped Er, Pr∶CaF2 crystal[J]. Journal of Alloys and Compounds, 2017, 695: 3370-3375.
|
11 |
WANG Y, YOU Z Y, LI J F, et al. Spectroscopic investigations of highly doped Er3+∶GGG and Er3+/Pr3+∶GGG crystals[J]. Journal of Physics D: Applied Physics, 2009, 42(21): 215406.
|
12 |
LUPEI V, GEORGESCU S, FLOREA V. On the dynamics of population inversion for 3 μm Er3+ lasers[J]. IEEE Journal of Quantum Electronics, 1993, 29(2): 426-434.
|
13 |
YOU L, LU D Z, PAN Z B, et al. High-efficiency 3 μm Er∶YGG crystal lasers[J]. Optics Letters, 2018, 43(23): 5873-5876.
|
14 |
QUAN C, SUN D L, ZHANG H L, et al. 13-W and 1000-Hz of a 2.7-µm laser on the 968 nm LD side-pumped Er∶YAP crystal with concave end-faces[J]. Optics Express, 2021, 29(14): 21655-21663.
|
15 |
ZHANG M, YIN Y R, ZHANG L, et al. Self-Q-switched Er∶Lu2O3 laser at 2.74 µm[J]. Applied Optics, 2023, 62(6): 1462-1466.
|
16 |
HU L Z, SUN D L, LUO J Q, et al. Effect of Er3+ concentration on spectral characteristic and 2.79 μm laser performance of Er∶YSGG crystal[J]. Journal of Luminescence, 2020, 226: 117502.
|
17 |
XUE Y Y, LI N, WANG D H, et al. Spectroscopic and laser properties of Tm∶CNGG crystals grown by the micro-pulling-down method[J]. Journal of Luminescence, 2019, 213: 36-39.
|
18 |
于浩海, 潘忠奔, 张怀金, 等. 无序激光晶体及其超快激光研究进展[J]. 人工晶体学报, 2021, 50(4): 648-668+583.
|
|
YU H H, PAN Z B, ZHANG H J, et al. Development of disordered laser crystals and their ultrafast lasers[J]. Journal of Synthetic Crystals, 2021, 50(4): 648-668+583 (in Chinese).
|
19 |
SCHMIDT A, GRIEBNER U, ZHANG H J, et al. Passive mode-locking of the Yb∶CNGG laser[J]. Optics Communications, 2010, 283(4): 567-569.
|
20 |
ZHANG Y G, PETROV V, GRIEBNER U, et al. Diode-pumped SESAM mode-locked Yb∶CLNGG laser[J]. Optics & Laser Technology, 2015, 69: 144-147.
|
21 |
XIE G Q, QIAN L J, YUAN P, et al. Generation of 534 fs pulses from a passively mode-locked Nd∶CLNGG-CNGG disordered crystal hybrid laser[J]. Laser Physics Letters, 2010, 7(7): 483-486.
|
22 |
MA J, PAN Z B, WANG J, et al. Generation of sub-50 fs soliton pulses from a mode-locked Yb, Na∶CNGG disordered crystal laser[J]. Optics Express, 2017, 25(13): 14968.
|
23 |
WANG Y C, ZHAO Y G, PAN Z B, et al. 78 fs SWCNT-SA mode-locked Tm∶CLNGG disordered garnet crystal laser at 2017 nm[J]. Optics Letters, 2018, 43(17): 4268-4271.
|
24 |
PAN Z B, WANG Y C, ZHAO Y G, et al. Generation of 84-fs pulses from a mode-locked Tm∶CNNGG disordered garnet crystal laser[J]. Photonics Research, 2018, 6(8): 800.
|
25 |
PAN Z B, LOIKO P, WANG Y C, et al. Disordered Tm3+, Ho3+-codoped CNGG garnet crystal: towards efficient laser materials for ultrashort pulse generation at ∼2 μm[J]. Journal of Alloys and Compounds, 2021, 853: 157100.
|
26 |
TANG K Y, YINGMING S, GAI J G, et al. Evaluation of growth, thermal, and spectroscopic properties of Er3+-doped CLNGG crystals for use in 2.7 μm laser[J]. Crystals, 2021, 11(2): 126.
|
27 |
SOJKA L, PAJEWSKI L, LAMRINI S, et al. Experimental investigation of actively Q-switched Er3+∶ZBLAN fiber laser operating at around 2.8 µm[J]. Sensors, 2020, 20(16): 4642.
|
28 |
UEHARA H, TOKITA S, KAWANAKA J, et al. Optimization of laser emission at 2.8 μm by Er∶Lu2O3 ceramics[J]. Optics Express, 2018, 26(3): 3497-3507.
|
29 |
郭 俊, 刘 坚, 王泽彬, 等. Nd∶ASL单晶光纤的生长、光谱和激光性能研究[J]. 人工晶体学报, 2024, 53(11): 1877-1883.
|
|
GUO J, LIU J, WANG Z B, et al. Growth, spectroscopic properties and laser performance of Nd∶ASL single crystal fibers[J]. Journal of Synthetic Crystals, 2024, 53(11): 1877-1883 (in Chinese).
|
30 |
顾 鹏, 王鹏刚, 官伟明, 等. 单晶光纤生长技术研究进展[J]. 人工晶体学报, 2021, 50(12): 2362-2378.
|
|
GU P, WANG P G, GUAN W M, et al. Research progress on growth techniques of single crystal fiber[J]. Journal of Synthetic Crystals, 2021, 50(12): 2362-2378 (in Chinese).
|
31 |
DÉLEN X, PIEHLER S, DIDIERJEAN J, et al. 250 W single-crystal fiber Yb∶YAG laser[J]. Optics Letters, 2012, 37(14): 2898-2900.
|
32 |
KAMINSKII A A, BELOKONEVA E L, BUTASHIN A V, et al. Crystal structure and spectral luminescence properties of the cation-deficient garnet Ca3(Nb,Ga)2Ga3O12-Nd3+ [J]. Inorganic Materials, 1986, 22(7): 927-936.
|
33 |
ZHAO X Y, SUN D L, LUO J Q, et al. Spectroscopic and laser properties of Er∶LuSGG crystal for high-power ∼2.8 µm mid-infrared laser[J]. Optics Express, 2020, 28(6): 8843-8852.
|