人工晶体学报 ›› 2025, Vol. 54 ›› Issue (6): 1078-1088.DOI: 10.16553/j.cnki.issn1000-985x.2024.0290
• 研究论文 • 上一篇
收稿日期:
2024-11-19
出版日期:
2025-06-20
发布日期:
2025-06-23
作者简介:
李艳(1979—),女,河南省人,博士,高级实验师。E-mail:liyan@cumt.edu.cn
基金资助:
Received:
2024-11-19
Online:
2025-06-20
Published:
2025-06-23
摘要: 为了优化光学薄膜的防护性能,延长使用寿命,本文创新性地采用液态防护膜以保护光学薄膜,制备了三种不同的液态防护膜,包括纯物质防护膜、混合液态防护膜和胶体防护膜。探究三种液态防护膜的透过率、激光损伤阈值(LIDT)和自修复性能,并对液态防护膜的防护效果进行研究。结果表明,三种液态防护膜中胶体防护膜性能最为优异,其中SiO2胶体透过率达91.8%,LIDT达34.2 J/cm2。基于液体可流动的特性,三种液态防护膜都具有一定的自修复性能,能够重复多次地抵御高能激光辐照。在激光辐照下,SiO2胶体防护膜的损伤面积小,自修复时间最短。经过激光损伤阈值测试后发现,装配液态防护膜后的光学薄膜具有更优异的防护效果。
中图分类号:
李艳, 韩笋, 许程. 液态防护膜的制备及性能研究[J]. 人工晶体学报, 2025, 54(6): 1078-1088.
LI Yan, HAN Sun, XU Cheng. Preparation and Performance Study of Liquid Protective Film[J]. Journal of Synthetic Crystals, 2025, 54(6): 1078-1088.
图1 液态防护膜。(a)液态防护膜示意图;(b)液态防护膜实物图
Fig.1 Liquid protective film. (a) Schematic diagram of liquid protective film; (b) physical picture of liquid protective film
图12 液态防护膜损伤面积随时间演变图。(a)C2H5OH;(b)H2O;(c)比例1∶1的H2O和C2H5OH混合液态防护膜;(d)SiO2胶体
Fig.12 Damage area evolution of liquid protective film. (a) C2H5OH; (b) H2O; (c) mixed liquid of H2O and C2H5OH with 1∶1 ratio; (d) SiO2 colloid
图13 四种液态防护膜的典型激光损伤形貌。(a)C2H5OH;(b)H2O;(c)比例1∶1的H2O和C2H5OH混合液态防护膜;(d)SiO2胶体(Ⅰ和Ⅱ分别为对应局部区域放大图)
Fig.13 Typical laser damage morphologies of four liquid protective films. (a) C2H5OH; (b) H2O; (c) mixed liquid of H2O and C2H5OH with 1∶1 ratio; (d) SiO2 colloid (Ⅰ and Ⅱ are enlarged images of the corresponding local areas, respectively)
图14 四种液态防护膜的代表性激光损伤斑深度。(a)C2H5OH;(b)H2O;(c)比例1∶1的H2O和C2H5OH混合液态防护膜;(d)SiO2胶体
Fig.14 Representative laser damage spot depth of four types of liquid protective films. (a) C2H5OH; (b) H2O; (c) mixed liquid of H2O and C2H5OH with 1∶1 ratio; (d) SiO2 colloid
1 |
王志皓, 王胭脂, 沈自才, 等. 空间应用激光薄膜元件研究进展[J]. 航空材料学报, 2024, 44(3): 13-22.
DOI |
WANG Z H, WANG Y Z, SHEN Z C, et al. Advances in space laser coating for space exploration[J]. Journal of Aeronautical Materials, 2024, 44(3): 13-22 (in Chinese).
DOI |
|
2 | 苏 彬, 张 琦, 张 伟, 等. 空间三结砷化镓太阳电池的激光防护研究[J]. 电源技术, 2022, 46(9): 1030-1033. |
SU B, ZHANG Q, ZHANG W, et al. Study on the laser protection for space tri-junction GaAs solar cells[J]. Chinese Journal of Power Sources, 2022, 46(9): 1030-1033 (in Chinese).
DOI |
|
3 | 王鸿琪, 赵永峰, 滕 涛, 等. 激光防护材料及其在涂层中的应用研究进展[J]. 中国表面工程, 2022, 35(6): 51-72. |
WANG H Q, ZHAO Y F, TENG T, et al. Research progress of laser protective materials and their applications in coatings[J]. China Surface Engineering, 2022, 35(6): 51-72 (in Chinese).
DOI |
|
4 | 姜玉刚, 刘华松, 王利栓, 等. 卫星激光防护薄膜窗口的设计与制备技术研究[J], 中国光学, 2019, 12(4):804-809. |
JIANG Y G, LIU H S, WANG L S, et al. Design and preparation technology of laser protective film window of satellite [J]. Chinese Optics. 2019, 12(4):804-809. | |
5 | 袁世豪, 徐均琪, 苏俊宏, 等. 高损伤阈值激光薄膜的制备方法[J]. 应用光学, 2023, 44(6): 1185-1194. |
YUAN S H, XU J Q, SU J H, et al. Review of preparation methods of laser films with high damage threshold[J]. Journal of Applied Optics, 2023, 44(6): 1185-1194 (in Chinese). | |
6 | 杨 科, 薛媛元, 贾 波, 等. 激光损伤阈值测量装置同步触发模块研究[J]. 应用光学, 2023, 44(6): 1228-1235. |
YANG K, XUE Y Y, JIA B, et al. Research on synchronous trigger module of laser-induced damage threshold measurement device[J]. Journal of Applied Optics, 2023, 44(6): 1228-1235 (in Chinese). | |
7 | ZHOU Q, QIU F M, MA P, et al. Investigating the material properties of HfO2/SiO2-based anti-reflection coatings during 1064 nm laser-induced breakdown in air and vacuum conditions[J]. Optics & Laser Technology, 2023, 157: 108645. |
8 | WEN J H, ZHU M P, CHAI Y J, et al. Optical and femtosecond laser-induced damage-related properties of Ta2O5-based oxide mixtures[J]. Journal of Alloys and Compounds, 2023, 957: 170352. |
9 | ZHAO J, ZHAO Y, PENG Y, et al. Review of femtosecond laser direct writing fiber-optic structures based on refractive index modification and their applications[J]. Optics & Laser Technology, 2022, 146: 107473. |
10 | XU C, DONG H C, MA J Y, et al. Influences of SiO2 protective layers and annealing on the laser-induced damage threshold of Ta2O5 films[J]. Chinese Optics Letters, 2008, 6(3): 228-230. |
11 | XU C, LI D W, MA J Y, et al. Influence of SiO2 additional layers on the laser induced damage threshold of Ta2O5 films[J]. Optics & Laser Technology, 2008, 40(3): 545-549. |
12 | 刘晓凤, 李笑, 赵元安, 等. SiO2 保护膜对高反膜激光损伤特性的改善[J]. 强激光与粒子束, 2010, 22(12): 2860-2864. |
LIU X F, LI X, ZHAO Y A, et al. Damage characteristic improvement of high reflectors by SiO2 overlayer[J]. High Power Laser and Particle Beams, 2010, 22(12): 2860-2864. | |
13 | 杨应田. 高阈值溶胶凝胶Nb2O5薄膜的制备及激光损伤特性研究[D]. 徐州: 中国矿业大学, 2019. |
YANG Y T. Preparation and laser damage characteristics of high threshold sol-gel Nb2O5 thin films[D]. Xuzhou: China University of Mining and Technology, 2019 (in Chinese). | |
14 | ZHANG M, ZHU Y Q, LI D W, et al. An innovative method for preparation of sol-gel HfO2 films with high laser-induced damage threshold after high-temperature annealing[J]. Applied Surface Science, 2021, 554: 149615. |
15 | ISO 11254-1:2000. Lasers and laser-related equipment-determination of laser-induced damage threshold of optical surfaces, Part 1. 1-on-1 test[S]. International Organization for Standardization, Geneva, Switzerland, 2000. |
16 | MA M, XU C, LIN D, et al. Temperature effect on the nanosecond laser-induced damage of TiO2 films with two additives[J]. Journal of optoelectronics and advanced materials 2017, 19: 189-196. |
17 | 魏 屹, 董成军, 徐 明. Si/SiO2和Si/SiN x /SiO2超晶格的能带结构[J]. 中国科学: 物理学 力学 天文学, 2010, 40(1): 55-59. |
WEI Y, DONG C J, XU M. Band structure of Si/SiO2 and Si/SiN x /SiO2 superlattices[J]. Scientia Sinica (Pysica, Mechanica & Astronomica), 2010, 40(1): 55-59 (in Chinese). | |
18 | FENG S J, ZHAO J, LIANG X X, et al. Mo-modified (t-m)-ZrO2 with narrowed band gap and strong ability to activate reactants for photocatalytic CO2 reduction[J]. Molecular Catalysis, 2023, 544: 113205. |
19 | CHEN Y H, CHIU S K, LAI M C, et al. Tunable, graded band-gap TiO2 thin film solar cell deposited by HIPIMS on flexible substrate[J]. Surface and Coatings Technology, 2024, 477: 130302. |
20 | HAN H Z, CHENG Y L, FANG C Q, et al. Controllable morphology, structure and optical properties of W-Eu Co-doped VO2 with a tunable phase transition temperature and band gap[J]. Journal of Materials Research and Technology, 2022, 17: 2026-2037. |
21 | 张 林. 飞秒激光诱导石英玻璃损伤特性与动态演变过程研究[D]. 武汉: 华中科技大学, 2022. |
ZHANG L. Study on damage characteristics and dynamic evolution of Shi Ying glass induced by femtosecond laser[D]. Wuhan: Huazhong University of Science and Technology, 2022 (in Chinese). |
[1] | 霍晓青, 张胜男, 周金杰, 王英民, 程红娟, 孙启升. 3~4英寸Fe掺高阻β-Ga2O3单晶的制备及其性能研究[J]. 人工晶体学报, 2025, 54(3): 407-413. |
[2] | 初学峰, 黄林茂, 张祺, 谢意含, 胡小军. 铟锡氧(ITO)和氟锡氧(FTO)透明导电薄膜的表征与分析[J]. 人工晶体学报, 2024, 53(5): 848-854. |
[3] | 甘世雁, 梅炳初, 李威威. Er,Na:CaF2透明陶瓷的制备与光谱性能研究[J]. 人工晶体学报, 2024, 53(12): 2059-2065. |
[4] | 吴文杰, 何代华, 程思远, 何夕云. PLZT透明陶瓷的微区组分调控及梯度设计与电光性能研究[J]. 人工晶体学报, 2024, 53(11): 1956-1963. |
[5] | 刘作冬, 潘其悦, 刘瑞, 曹悦, 李思雅, 王嘉顺, 于永生, 刘鹏, 井强山. Y3+∶CaF2透明陶瓷的制备及其显微结构研究[J]. 人工晶体学报, 2024, 53(11): 1997-2003. |
[6] | 周霖涛, 赵涛, 孙志刚, 姜林文, 潘尚可, 潘建国, 郑燕青. 坩埚下降法生长2英寸镱掺杂钙铌镓石榴石单晶[J]. 人工晶体学报, 2024, 53(10): 1669-1674. |
[7] | 韩笋, 李艳. VO2-SiO2复合薄膜的激光诱导损伤特性研究[J]. 人工晶体学报, 2024, 53(10): 1738-1744. |
[8] | 耿方娟, 杨磊, 朱嘉琦. 退火方式及温度对层层碘化法CuI薄膜结构、形貌和光电性能的影响[J]. 人工晶体学报, 2023, 52(5): 842-848. |
[9] | 赵小玻, 韦中华, 张旭, 钱纁, 于浩海. 化学气相沉积ZnS、ZnSe研究进展[J]. 人工晶体学报, 2023, 52(12): 2125-2134. |
[10] | 石爽爽, 王国影, 肖亚波, 王海丽, 陈建荣. CLBO单晶生长及性能研究[J]. 人工晶体学报, 2023, 52(12): 2146-2150. |
[11] | 石爽爽, 师瑞泽, 王国影, 肖亚波, 王海丽, 陈建荣. RTP电光晶体的生长及其器件性能研究[J]. 人工晶体学报, 2023, 52(12): 2151-2155. |
[12] | 赵鹏, 宋建军, 张微, 承刚, 张立生, 付春雷, 石刚, 黄存新. 泡生法制备低吸收蓝宝石晶体及其性能研究[J]. 人工晶体学报, 2023, 52(12): 2203-2209. |
[13] | 王颖, 张微, 田庭燕, 黄存新, 王震, 陈建荣, 石爽爽. AlON透明陶瓷的制备及其力学性能研究[J]. 人工晶体学报, 2023, 52(12): 2215-2221. |
[14] | 崔洪梅, 张旭, 陈琳, 苏健, 宋雷, 马天翼, 钱纁, 韦中华. 元素级ZnS高温性能研究[J]. 人工晶体学报, 2023, 52(12): 2222-2227. |
[15] | 赵鹏, 仵嘉玲, 夏聪, 马世会, 胡章贵. 激光浮区法生长TbYO3晶体[J]. 人工晶体学报, 2023, 52(10): 1758-1765. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||