1 |
KITCHING J, KNAPPE S, LIEW L, et al. Microfabricated atomic clocks[C]// 18th IEEE International Conference on Micro Electro Mechanical Systems, January 30-February 3, 2005, Miami Beach, FL, USA. IEEE, 2005: 1-7.
|
2 |
SERKLAND D K, GEIB K M, PEAKE G M, et al. VCSELs for atomic sensors[C]// Vertical-Cavity Surface-Emitting Lasers XI. San Jose, CA. SPIE, 2007: 648406.
|
3 |
MALEEV N A, BLOKHIN S A, BOBROV M A, et al. Laser source for a compact nuclear magnetic resonance gyroscope[J]. Gyroscopy and Navigation, 2018, 9(3): 177-182.
|
4 |
JUNG C, JÄGER R, GRABHERR M, et al. 4.8 mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes[J]. Electronics Letters, 1997, 33(21): 1790.
|
5 |
ZHANG J, NING Y Q, ZENG Y G, et al. Design and analysis of high-temperature operating 795 nm VCSELs for chip-scale atomic clocks[J]. Laser Physics Letters, 2013, 10(4): 045802.
|
6 |
SUN Y R, DONG J R, ZHAO Y M, et al. The fabrication and lasing characteristics of oxide-confined 795 nm VCSELs with close and open isolation trenches[J]. Optical and Quantum Electronics, 2017, 49(11): 361.
|
7 |
ZHOU Y L, JIA Y C, ZHANG X, et al. Large-aperture single-mode 795 nm VCSEL for chip-scale nuclear magnetic resonance gyroscope with an output power of 4.1 mW at 80 ℃[J]. Optics Express, 2022, 30(6): 8991-8999.
|
8 |
XUN M, PAN G Z, ZHAO Z Z, et al. High single fundamental-mode output power from 795 nm VCSELs with a long monolithic cavity[J]. IEEE Electron Device Letters, 2023, 44(7): 1144-1147.
|
9 |
HUFFAKER D L, DEPPE D G, KUMAR K, et al. Native-oxide defined ring contact for low threshold vertical-cavity lasers[J]. Applied Physics Letters, 1994, 65(1): 97-99.
|
10 |
MOSER P, LOTT J A, LARISCH G, et al. Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs[J]. Journal of Lightwave Technology, 2015, 33(4): 825-831.
|
11 |
SHARIZAL A M, LEISHER P O, CHOQUETTE K D, et al. Effect of oxide aperture on the performance of 850nm vertical-cavity surface-emitting lasers[J]. Optik, 2009, 120(3): 121-126.
|
12 |
聂语葳, 李 伟, 吕家纲, 等. 氧化限制型795 nm垂直腔面发射激光器[J]. 中国激光, 2024, 51(6): 0601004.
|
|
NIE Y W, LI W, LYU J G, et al. Oxidation-limited 795 nm vertical cavity surface emission laser[J]. Chinese Journal of Lasers, 2024, 51(6): 0601004 (in Chinese).
|
13 |
ALMUNEAU G, BOSSUYT R, COLLIÈRE P, et al. Real-time in situ monitoring of wet thermal oxidation for precise confinement in VCSELs[J]. Semiconductor Science and Technology, 2008, 23(10): 105021.
|
14 |
FENG Y, LIU G J, YAN C L, et al. A study on the law of oxidation rate in GaAs-based VCSELs[J]. Optik, 2014, 125(18): 5124-5127.
|
15 |
陈 磊, 罗 妍, 冯 源, 等. 基于VCSEL的湿法氧化工艺的温度依赖性研究[J]. 中国激光, 2020, 47(7): 0701023.
|
|
CHEN L, LUO Y, FENG Y, et al. Temperature dependence of wet oxidation process based on VCSEL[J]. Chinese Journal of Lasers, 2020, 47(7): 0701023 (in Chinese).
|
16 |
OU Y, GUSTAVSSON J S, WESTBERGH P, et al. Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs[J]. IEEE Photonics Technology Letters, 2009, 21(24): 1840-1842.
|
17 |
HAGLUND E, WESTBERGH P, GUSTAVSSON J S, et al. High-speed VCSELs with strong confinement of optical fields and carriers[J]. Journal of Lightwave Technology, 2016, 34(2): 269-277.
|
18 |
LIU M, WANG C Y, FENG M, et al. 50 Gb/s error-free data transmission of 850 nm oxide-confined VCSELs[C]// 2016 Optical Fiber Communications Conference and Exhibition (OFC). March 20-24, 2016, Anaheim, CA, USA. IEEE, 2016: 1-3.
|
19 |
CHENG C H, SHEN C C, KAO H Y, et al. 850/940-nm VCSEL for optical communication and 3D sensing[J]. Opto-Electronic Advances, 2018, 1(3): 180005.
|
20 |
SAMAL N, JOHNSON S R, DING D, et al. High-power single-mode vertical-cavity surface-emitting lasers[J]. Applied Physics Letters, 2005, 87(16): 161108.
|
21 |
CHANG K S, SONG Y M, LEE Y T. Stable single-mode operation of VCSELs with a mode selective aperture[J]. Applied Physics B, 2007, 89(2): 231-234.
|
22 |
YAZDANYPOOR M, GHOLAMI A. Optimizing optical output power of single-mode VCSELs using multiple oxide layers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1701708.
|
23 |
YAZDANYPOOR M, EMAMI F. High power single mode multi-oxide layer VCSEL with optimized thicknesses and aperture sizes of oxide layers[J]. Journal of the Optical Society of Korea, 2014, 18(2): 167-173.
|
24 |
李海军, 钟景昌, 郝永琴, 等. 湿法氧化工艺对VCSEL器件性能的影响[J]. 中国电子科学研究院学报, 2006, 1(4): 369-372.
|
|
LI H J, ZHONG J C, HAO Y Q, et al. The influence of wet oxidation for VCSELs' charactors[J]. Journal of China Academy of Electronics and Information Technology, 2006, 1(4): 369-372 (in Chinese).
|
25 |
CHUANG S L. Physics of optoelectronic devices[M]. 3rd ed. Hoboken, New Jersey: John Wiley & Sons, 2005: 28-50.
|
26 |
PASSARO V M N, MAGNO F, DE LEONARDIS F. Optimization of Bragg reflectors in AlGaAs/GaAs VCSELs[J]. Laser Physics Letters, 2005, 2(5): 239-246.
|
27 |
HADLEY G R, LEAR K L, WARREN M E, et al. Comprehensive numerical modeling of vertical-cavity surface-emitting lasers[J]. IEEE Journal of Quantum Electronics, 1996, 32(4): 607-616.
|
28 |
PIPREK J. Semiconductor optoelectronic devices: introduction to physics and simulation[M]. Amsterdam: Elsevier, 2003.
|
29 |
WACHUTKA G K. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1990, 9(11): 1141-1149.
|
30 |
GAO Y B, ZHANG Y H, CHU C S, et al. Effectively confining the lateral current within the aperture for GaN based VCSELs by using a reverse biased NP junction[J]. IEEE Journal of Quantum Electronics, 2020, 56(4): 2400507.
|
31 |
BOND A E, DAPKUS P D, O’BRIEN J D. Aperture placement effects in oxide-defined vertical-cavity surface-emitting lasers[J]. IEEE Photonics Technology Letters, 1998, 10(10): 1362-1364.
|
32 |
PAN G Z, XUN M, ZHAO Z Z, et al. High slope efficiency bipolar cascade 905 nm vertical cavity surface emitting laser[J]. IEEE Electron Device Letters, 2021, 42(9): 1342-1345.
|
33 |
庄顺连. 光子器件物理[M]. 2版. 北京: 电子工业出版社, 2013: 30-31.
|
|
ZHUANG S L. Photonic device physics[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2013: 30-31 (in Chinese).
|
34 |
WANG G, YANG Q. Optimization of the operating point of a vertical-cavity surface-emitting laser[J]. IEEE Journal of Quantum Electronics, 1995, 32: 1441-1449.
|
35 |
XIAO Y, WANG J, LIU H, et al. Multi-junction cascaded vertical-cavity surface-emitting laser with a high power conversion efficiency of 74%[J]. Light, Science & Applications, 2024, 13(1): 60.
|
36 |
杨 浩, 郭 霞, 关宝璐, 等. 注入电流对垂直腔面发射激光器横模特性的影响[J]. 物理学报, 2008, 57(5): 2959-2965.
|
|
YANG H, GUO X, GUAN B L, et al. The influence of injection current on transverse mode characteristics of vertical-cavity surface-emitting lasers[J]. Acta Physica Sinica, 2008, 57(5): 2959-2965 (in Chinese).
|