1 |
LI W C, CUI J, ZHENG D H, et al. Fabrication and characteristics of heavily Fe-doped LiNbO3/Si heterojunction[J]. Materials, 2019, 12(17): 2659.
|
2 |
WANG X C, LIANG Y, TIAN S F, et al. Oxygen pressure dependent growth of pulsed laser deposited LiNbO3 films on diamond for surface acoustic wave device application[J]. Journal of Crystal Growth, 2013, 375: 73-77.
|
3 |
ALMIRALL A, OLIVERI S, DANIAU W, et al. High-frequency surface acoustic wave devices based on epitaxial Z-LiNbO3 layers on sapphire[J]. Applied Physics Letters, 2019, 114(16): 162905.
|
4 |
LI X Z, HU R C, WU Z H, et al. S0-like SAW mode resonator on LiNbO3/SiO2/SiC structure[J]. Japanese Journal of Applied Physics, 2024, 63(2): 02SP91.
|
5 |
TIWARY A, ROUT S S, BEHERA B. Design and analysis of various characteristics of a MEMS-based PIB/CNT/LiNbO3 multilayered SAW sensor for CO2 gas detection[J]. Transactions on Electrical and Electronic Materials, 2022, 23(6): 609-617.
|
6 |
WANG C, WANG Y C, HUO D W, et al. Subwavelength coupling and ultra-high exponential gain coefficient originating from 2D electron gas at ITO/LiNbO3 interface[J]. Journal of Applied Physics, 2019, 125(9): 095304.
|
7 |
LUCCHETTI L, KUSHNIR K, RESHETNYAK V, et al. Light-induced electric field generated by photovoltaic substrates investigated through liquid crystal reorientation[J]. Optical Materials, 2017, 73: 64-69.
|
8 |
王英策. 铌酸锂/氧化铟锡异质结二维电子气的杂化等离激元[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
|
WANG Y C. Hybrid plasmon of two-dimensional electron gas in lithium niobate/indium tin oxide heterojunction[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese).
|
9 |
MCPOLIN C P, OLIVIER N, BOUILLARD J S, et al. Universal switching of plasmonic signals using optical resonator modes[J]. Light, Science & Applications, 2017, 6(6): e16237.
|
10 |
靳 琳, 宋世超, 文 龙, 等. 基于表面等离激元的偏振不灵敏型电光调制器的理论研究[J]. 光电工程, 2018, 45(11): 180156.
|
|
JIN L, SONG S C, WEN L, et al. Theoretical investigation of surface plasmonic polariton-based electro-optical modulator with low polarization dependence[J]. Opto-Electronic Engineering, 2018, 45(11): 180156. (in Chinese).
|
11 |
SASANI GHAMSARI M. Development of thin film fabrication using magnetron sputtering[J]. Metals, 2023, 13(5): 963.
|
12 |
OGUGUA S N, NTWAEABORWA O M, SWART H C. Latest development on pulsed laser deposited thin films for advanced luminescence applications[J]. Coatings, 2020, 10(11): 1078.
|
13 |
LAN F F, ZHOU R, QIAN Z Y, et al. Chemical vapor deposition of ferrimagnetic Fe3O4 thin films[J]. Crystals, 2022, 12(4): 485.
|
14 |
NISTICÒ R, SCALARONE D, MAGNACCA G. Sol-gel chemistry, templating and spin-coating deposition: a combined approach to control in a simple way the porosity of inorganic thin films/coatings[J]. Microporous and Mesoporous Materials, 2017, 248: 18-29.
|
15 |
JARIWALA S, SUN H Y, ADHYAKSA G W P, et al. Local crystal misorientation influences non-radiative recombination in halide perovskites[J]. Joule, 2019, 3(12): 3048-3060.
|
16 |
PARAJULI P, MENDOZA-CRUZ R, SANTIAGO U, et al. The evolution of growth, crystal orientation, and grain boundaries disorientation distribution in gold thin films[J]. Crystal Research and Technology, 2018, 53(8): 1800038.
|
17 |
WANG X C, YE Z Z, LI G M, et al. Influence of substrate temperature on the growth and optical waveguide properties of oriented LiNbO3 thin films[J]. Journal of Crystal Growth, 2007, 306(1): 62-67.
|
18 |
张琦锋, 侯士敏, 邵庆益, 等. BaO半导体薄膜在外加垂直表面电场作用下的近紫外光吸收增强现象研究[J]. 物理学报, 2000, 49(10): 2089-2093.
|
|
ZHANG Q F, HOU S M, SHAO Q Y, et al. Study of enhanced photoabsorption of BaO thin films in the near-ultraviolet band with applied vertical electric field on the surface[J]. Acta Physica Sinica, 2000, 49(10): 2089-2093 (in Chinese).
|
19 |
DE VLEESCHOUWER H, BOUGRIOUA F, PAUWELS H. Importance of ion transport in industrial LCD applications[J]. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 2001, 360(1): 29-39.
|
20 |
卫静婷, 陈利伟. 半导体载流子迁移率及电阻率的计算模型[J]. 内江师范学院学报, 2016, 31(10): 43-47.
|
|
WEI J T, CHEN L W. Calculation model for carrier mobility and semiconductor resistivity[J]. Journal of Neijiang Normal University, 2016, 31(10): 43-47 (in Chinese).
|
21 |
吴论生. 铌酸锂晶体的暗电导研究[J]. 西南师范大学学报(自然科学版), 2011, 33(6): 24-27.
|
|
WU L S. Study on electrical conductivity of lithium niobate[J]. Journal of Southwest China Normal University (Natural Science Edition), 2011, 33(6): 24-27 (in Chinese).
|
22 |
SUMETS M, BELONOGOV E, IEVLEV V, et al. Synthesis and properties of NiSi2-LiNbO3 heterostructures fabricated by radio-frequency magnetron sputtering[J]. Surfaces and Interfaces, 2020, 21: 100797.
|
23 |
FANG G J, LI D J, YAO B L. Magnetron sputtered AZO thin films on commercial ITO glass for application of a very low resistance transparent electrode[J]. Journal of Physics D: Applied Physics, 2002, 35(23): 3096-3100.
|
24 |
张治国. ITO薄膜的能带结构和电导特性[J]. 半导体学报, 2006, 27(5): 840-845.
|
|
ZHANG Z G. Energy band structure and conducting characteristics of ITO films[J]. Chinese Journal of Semiconductors, 2006, 27(5): 840-845 (in Chinese).
|
25 |
王明旭, 岳光辉, 范晓彦, 等. Cu3N薄膜的制备及其霍尔效应研究[J]. 人工晶体学报, 2006, 35(5): 1108-1112.
|
|
WANG M X, YUE G H, FAN X Y, et al. Investigations on preparation and the Hall effect of the Cu3N thin films[J]. Journal of Synthetic Crystals, 2006, 35(5): 1108-1112 (in Chinese).
|