
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (9): 1558-1565.DOI: 10.16553/j.cnki.issn1000-985x.2025.0048
收稿日期:2025-03-11
出版日期:2025-09-20
发布日期:2025-09-23
通信作者:
潘建国
作者简介:陈灿(2000—),男,浙江省人,硕士研究生。E-mail:1471998055@qq.com
基金资助:
CHEN Can(
), HU Yizhe, ZHANG Zhijing, PAN Jianguo(
), PAN Shangke
Received:2025-03-11
Online:2025-09-20
Published:2025-09-23
Contact:
PAN Jianguo
摘要: 本文采用重结晶法和区域熔炼法提纯γ-CuI原料,使用坩埚下降法生长出了不同Zn离子浓度掺杂的γ-CuI单晶,并对其晶体结构、光致发光、X射线激发发射光谱和荧光寿命进行了详细研究。XRD和SEM测试结果表明,所合成的样品为高纯的γ-CuI,Zn离子能掺入γ-CuI单晶中。光致发光光谱和X射线激发光谱结果表明,Zn离子掺杂后自由激子和Cu+空位的发射得到增强,深能级发射被抑制。在Zn离子掺杂浓度为5%时,Cu0.95I:Zn0.05晶体的荧光寿命为0.36 ns,明显优于γ-CuI的0.62 ns。
中图分类号:
陈灿, 胡祎哲, 张智瑾, 潘建国, 潘尚可. Zn离子掺杂γ-CuI晶体的生长及闪烁性能的研究[J]. 人工晶体学报, 2025, 54(9): 1558-1565.
CHEN Can, HU Yizhe, ZHANG Zhijing, PAN Jianguo, PAN Shangke. Growth and Scintillation Properties of Zn Ions Doped γ-CuI Crystals[J]. Journal of Synthetic Crystals, 2025, 54(9): 1558-1565.
图1 坩埚下降法生长的γ-CuI晶体。(a)CuI、Cu0.975I:Zn0.025、Cu0.95I:Zn0.05、Cu0.9I:Zn0.1、Cu0.8I:Zn0.2晶体;(b)Cu0.95I:Zn0.05晶片
Fig.1 γ-CuI crystals grown by Bridgman method. (a) CuI, Cu0.975I:Zn0.025, Cu0.95I:Zn0.05, Cu0.9I:Zn0.1, Cu0.8I:Zn0.2 crystals; (b) Cu0.95I:Zn0.05 wafer
图2 γ-CuI晶体。(a)采用不同溶剂进行重结晶法提纯后生长的γ-CuI晶体;(b)区熔提纯后γ-CuI晶体
Fig.2 γ-CuI crystal. (a) γ-CuI crystals grown by recrystallization with different solvents; (b) purified γ-CuI crystal by zone melting
| Sample | Content of Cu/% | Content of I/% | Content of Na/% | Content of K/% | Ratio of Cu and I |
|---|---|---|---|---|---|
| NaI | 48.90 | 52.10 | 0 | 0 | 0.94 |
| KI | 47.61 | 52.33 | 0 | 0.06 | 0.91 |
| NH4I | 45.92 | 54.08 | 0 | 0 | 0.85 |
表1 不同溶剂提纯后 γ -CuI的元素含量
Table 1 Element content of γ -CuI after purification by different solvents
| Sample | Content of Cu/% | Content of I/% | Content of Na/% | Content of K/% | Ratio of Cu and I |
|---|---|---|---|---|---|
| NaI | 48.90 | 52.10 | 0 | 0 | 0.94 |
| KI | 47.61 | 52.33 | 0 | 0.06 | 0.91 |
| NH4I | 45.92 | 54.08 | 0 | 0 | 0.85 |
| Sample | Content of Cu/% | Content of I/% | Content of Na/% | Ratio of Cu and I |
|---|---|---|---|---|
| Left end | 51.46 | 48.54 | 0 | 1.06 |
| Middle | 50.26 | 49.73 | 0 | 1.01 |
| Right end | 49.19 | 49.88 | 0.93 | 0.98 |
表2 水平区域熔炼后 γ -CuI的元素含量
Table 2 Element content of γ -CuI after horizontal zone melting
| Sample | Content of Cu/% | Content of I/% | Content of Na/% | Ratio of Cu and I |
|---|---|---|---|---|
| Left end | 51.46 | 48.54 | 0 | 1.06 |
| Middle | 50.26 | 49.73 | 0 | 1.01 |
| Right end | 49.19 | 49.88 | 0.93 | 0.98 |
| Sample | Peak position/nm | Peak area | Peak area ratio |
|---|---|---|---|
| CuI | 410 | 61 548 | 5.35 |
| 425 | 184 712 | 16.06 | |
| 700 | 903 372 | 78.58 | |
| Cu0.975I:Zn0.025 | 410 | 120 528 | 10.67 |
| 425 | 406 157 | 35.98 | |
| 720 | 602 038 | 53.33 | |
| Cu0.95I:Zn0.05 | 410 | 156 672 | 19.80 |
| 425 | 520 714 | 65.81 | |
| 720 | 113 762 | 14.37 | |
| Cu0.9I:Zn0.1 | 410 | 153 103 | 18.83 |
| 425 | 506 566 | 62.31 | |
| 720 | 153 243 | 18.85 | |
| Cu0.8I:Zn0.2 | 410 | 16 321 | 2.59 |
| 425 | 71 844 | 11.45 | |
| 720 | 539 683 | 85.96 |
表3 掺杂不同浓度Zn离子的 γ -CuI在不同位置的峰面积和比值
Table 3 Peak areas and ratios at different positions of γ -CuI doped with different concentrations of Zn ions
| Sample | Peak position/nm | Peak area | Peak area ratio |
|---|---|---|---|
| CuI | 410 | 61 548 | 5.35 |
| 425 | 184 712 | 16.06 | |
| 700 | 903 372 | 78.58 | |
| Cu0.975I:Zn0.025 | 410 | 120 528 | 10.67 |
| 425 | 406 157 | 35.98 | |
| 720 | 602 038 | 53.33 | |
| Cu0.95I:Zn0.05 | 410 | 156 672 | 19.80 |
| 425 | 520 714 | 65.81 | |
| 720 | 113 762 | 14.37 | |
| Cu0.9I:Zn0.1 | 410 | 153 103 | 18.83 |
| 425 | 506 566 | 62.31 | |
| 720 | 153 243 | 18.85 | |
| Cu0.8I:Zn0.2 | 410 | 16 321 | 2.59 |
| 425 | 71 844 | 11.45 | |
| 720 | 539 683 | 85.96 |
图5 Cu0.95I:Zn0.05晶体的紫外可见透过光谱。(a)光学透过率曲线图;(b)光学带隙曲线图
Fig.5 UV-Vis transmission curve of Cu0.95I:Zn0.05 crystal. (a) Optical transmission curve; (b) optical band gap curve
| Crystal | Ultrafast emission wavelength/nm | Decay time/ps | Density/(g·cm-3) | Bandgap/eV |
|---|---|---|---|---|
| γ-CuI:Zn | 420 | 360 | 5.71 | 2.92 |
| BaF2[ | 225 | 600 | 4.83 | 0.5 |
| Cs2LiYCl6:Ce[ | 315 | 1 000 | 3.31 | 5.52 |
| PbI2[ | 490 | 150 | 6.61 | 2.55 |
表4 高密度、快衰减的闪烁晶体与 γ -CuI:Zn晶体的性能对比
Table 4 High density, fast delay scintillation crystals and their properties compared with γ -CuI:Zn crystals
| Crystal | Ultrafast emission wavelength/nm | Decay time/ps | Density/(g·cm-3) | Bandgap/eV |
|---|---|---|---|---|
| γ-CuI:Zn | 420 | 360 | 5.71 | 2.92 |
| BaF2[ | 225 | 600 | 4.83 | 0.5 |
| Cs2LiYCl6:Ce[ | 315 | 1 000 | 3.31 | 5.52 |
| PbI2[ | 490 | 150 | 6.61 | 2.55 |
| [1] | HU C, ZHANG L Y, ZHU R Y, et al. Ultrafast inorganic scintillators for gigahertz hard X-ray imaging[J]. IEEE Transactions on Nuclear Science, 2018, 65(8): 2097-2104. |
| [2] | WEBER M J. Inorganic scintillators: today and tomorrow[J]. Journal of Luminescence, 2002, 100(1/2/3/4): 35-45. |
| [3] | DORENBOS P. Light output and energy resolution of Ce3+-doped scintillators[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486(1/2): 208-213. |
| [4] | DERENZO S E, WEBER M J, BOURRET-COURCHESNE E, et al. The quest for the ideal inorganic scintillator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 505(1/2): 111-117. |
| [5] | LECOQ P. Development of new scintillators for medical applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 809: 130-139. |
| [6] | VAN EIJK C W E. Cross-luminescence[J]. Journal of Luminescence, 1994, 60: 936-941. |
| [7] | VAN LOEF E D, DORENBOS P, VAN EIJK C E, et al. Scintillation and spectroscopy of the pure and Ce3+ -doped elpasolites: Cs2LiYX6(X Cl, Br)[J]. Journal of Physics: Condensed Matter, 2002, 14(36): 8481-8496. |
| [8] | GUERASSIMOVA N, GARNIER N, DUJARDIN C, et al. X-ray-excited charge transfer luminescence in YAG:Yb and YbAG[J]. Journal of Luminescence, 2001, 94: 11-14. |
| [9] | PAN J G, YANG S Y, LI Y B, et al. CuI crystal growth in acetonitrile solvent by the cycle-evaporation method[J]. Crystal Growth & Design, 2009, 9(9): 3825-3827. |
| [10] | DERENZO S E, WEBER M J, KLINTENBERG M K. Temperature dependence of the fast, near-band-edge scintillation from CuI, HgI2, PbI2, ZnO:Ga and CdS:In[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486(1/2): 214-219. |
| [11] | MOUSA A M. Optical and photoconduction in PbI2 polycrystalline deposited from solution[J]. International Journal of Modern Physics B, 2007, 21(21): 3745-3753. |
| [12] | KORONA K P, FINK-FINOWICKI J, BOHDAN A, et al. Polarized UV-visible photoluminescence from bulk β-Ga2O3 crystals[J]. Physica Status Solidi (b), 2025: 2400566. |
| [13] | ICHIDA H, KANEMATSU Y, SHIMOMURA T, et al. Photoluminescence dynamics of exciton-exciton scattering processes in CuI thin films[J]. Physical Review B, 2005, 72(4): 045210. |
| [14] | CHEN D G, WANG Y J, LIN Z, et al. Growth strategy and physical properties of the high mobility P-type CuI crystal[J]. Crystal Growth & Design, 2010, 10(5): 2057-2060. |
| [15] | RODNYI P A. Progress in fast scintillators[J]. Radiation Measurements, 2001, 33(5): 605-614. |
| [16] | ZHANG L P, GUO F, LIU X Z. Growth and shape evolution of octahedral CuI crystal by a SC-assisted hydrothermal method[J]. Materials Research Bulletin, 2006, 41(4): 905-908. |
| [17] | LOU B Q, ZHANG J F, LUO H, et al. γ-CuI crystal growth in ionic liquids by the oxygen-free cooling method[J]. Journal of Crystal Growth, 2014, 388: 1-4. |
| [18] | GAO P, GU M, LIU X, et al. Crystal growth and luminescence properties of CuI single crystals[J]. Optik, 2014, 125(3): 1007-1010. |
| [19] | VERESHCHAGIN I K, NIKITENKO V A, STOYUKHIN S G. Band-edge emission in CuI single crystals[J]. Journal of Luminescence, 1984, 29(5/6): 215-221. |
| [20] | XIA M, GU M, LIU X L, et al. Luminescence characteristics of CuI film by iodine annealing[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(7): 5092-5096. |
| [21] | ZHANG K X, WANG S W, BAI L Y, et al. Defect energy level and transition mechanism of CuI thin film by low-temperature spectrum[J]. Journal of Luminescence, 2019, 214: 116522. |
| [22] | GAO P, GU M, LIU X, et al. Photoluminescence study of annealing effects on CuI crystals grown by evaporation method[J]. Crystal Research and Technology, 2012, 47(7): 707-712. |
| [23] | GAO P, GU M, LIU X L, et al. X-ray excited luminescence of cuprous iodide single crystals: on the nature of red luminescence[J]. Applied Physics Letters, 2009, 95(22): 221904. |
| [24] | ZHU J J, GU M, PANDEY R. Structural and electronic properties of CuI doped with Zn, Ga and Al[J]. Journal of Physics and Chemistry of Solids, 2013, 74(8): 1122-1126. |
| [25] | GRUZINTSEV A N. Phase conjugation at the surfaces of optically excited CuI films[J]. Journal of Experimental and Theoretical Physics Letters, 2003, 78(3): 106-109. |
| [26] | HUANG D, ZHAO Y J, LI S, et al. First-principles study of γ-CuI for p-type transparent conducting materials[J]. Journal of Physics D: Applied Physics, 2012, 45(14): 145102. |
| [27] | LV Y Y, XU Z H, YE L W, et al. Large γ-CuI semiconductor single crystal growth by a temperature reduction method from an NH4I aqueous solution[J]. CrystEngComm, 2015, 17(4): 862-867. |
| [28] | LI M C, ZHANG Z, ZHAO Q, et al. Electronic structure and optical properties of doped γ-CuI scintillator: a first-principles study[J]. RSC Advances, 2023, 13(14): 9615-9623. |
| [29] | JIANG C Y, WEI X G, DU G Q, et al. Growth and properties of scintillating crystal BaF2 [J]. Journal of Crystal Growth, 1986, 79(1/2/3): 720-722. |
| [30] | VAN LOEF E V D, GLODO J, HIGGINS W M, et al. Optical and scintillation properties of Cs2LiYCl6:Ce3+ and Cs2LiYCl6:Pr3+ crystals[J]. IEEE Transactions on Nuclear Science, 2005, 52(5): 1819-1822. |
| [31] | KLEIM R, RAGA F. Exciton luminescence in lead iodide lifetime, intensity and spectral position dependence on temperature[J]. Journal of Physics and Chemistry of Solids, 1969, 30(9): 2213-2223. |
| [1] | 贾宇桢, 李政隆, 颜欣龙, 王瑞辰, 彭晨, 段韦恒, 杨伟虎, 何伟民, 宋柏君, 程瑶, 范潇宇, 杨帆. 0维钙钛矿Cs3CdBr5的晶体生长与闪烁性能研究[J]. 人工晶体学报, 2025, 54(7): 1221-1228. |
| [2] | 萧岱桢, 高荣, 陈怡, 米启兮. 全无机锡钙钛矿CsSnBr3晶体的生长和电学、光学性能研究[J]. 人工晶体学报, 2025, 54(7): 1245-1255. |
| [3] | 李家和, 郑丽丽, 张辉, 李翔, 陈俊锋. 坩埚下降法生长氟化物晶体的热场对界面形状和生长速率的影响[J]. 人工晶体学报, 2025, 54(5): 772-783. |
| [4] | 刘文宇, 钱露, 李芳建, 潘尚可, 孙志刚, 陈红兵, 潘建国. Li2MoO4晶体的坩埚下降法生长及其发光性能[J]. 人工晶体学报, 2025, 54(5): 793-800. |
| [5] | 赵美丽, 孙涛峰, 高璠, 宫红影, 臧晓微, 桂强, 张春生. 大尺寸Cs2LiYCl6:Ce晶体的制备与性能研究[J]. 人工晶体学报, 2025, 54(4): 553-559. |
| [6] | 周丽娜, 刘建强, 牛晓伟. 首量科技:ø210 mm大尺寸Eu3+∶CaF2激光晶体生长[J]. 人工晶体学报, 2025, 54(2): 358-359. |
| [7] | 陈鑫鑫, 韩佳力, 潘建国. 大尺寸高质量CsCu2I3晶体生长与发光性能研究[J]. 人工晶体学报, 2024, 53(7): 1106-1111. |
| [8] | 施宇峰, 王鹏飞, 穆宏赫, 苏良碧. 尺寸效应对坩埚下降法生长氟化钙晶体影响机制的数值模拟分析[J]. 人工晶体学报, 2024, 53(6): 973-981. |
| [9] | 殷洁, 张小强, 陈灿, 潘建国. 掺铈Cs2BaBr4晶体的生长和闪烁性能研究[J]. 人工晶体学报, 2024, 53(5): 760-765. |
| [10] | 赵涛, 艾蕾, 梁团结, 钱慧宇, 孙志刚, 潘建国. Yb∶Ca3(NbGa)5O12晶体的坩埚下降法生长及光学性能研究[J]. 人工晶体学报, 2024, 53(4): 620-626. |
| [11] | 周霖涛, 赵涛, 孙志刚, 姜林文, 潘尚可, 潘建国, 郑燕青. 坩埚下降法生长2英寸镱掺杂钙铌镓石榴石单晶[J]. 人工晶体学报, 2024, 53(10): 1669-1674. |
| [12] | 王迪, 汤港, 张博, 王墉哲, 张中晗, 姜大朋, 寇华敏, 苏良碧. Nd,Y∶SrF2激光晶体的位错缺陷表征及分布研究[J]. 人工晶体学报, 2023, 52(7): 1208-1218. |
| [13] | 王卿, 武书凡, 陆枳岑, 钱露, 潘尚可, 潘建国. 1英寸CsPbCl3晶体的生长及其发光性能研究[J]. 人工晶体学报, 2023, 52(4): 578-583. |
| [14] | 侯越云, 刘建强, 杨蕾, 闫晋力, 张明荣, 刘晓阳. 坩埚下降法生长的大尺寸BaF2:Y闪烁晶体的闪烁性能及辐照损伤研究[J]. 人工晶体学报, 2023, 52(4): 584-589. |
| [15] | 赵美丽, 孙涛峰, 桂强, 张春生, 王树印, 刘珊, 李新乔, 安正华, 杨生. 引力波伽马射线暴探测用大尺寸溴化镧晶体封装件的制备及性能研究[J]. 人工晶体学报, 2023, 52(3): 414-420. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS