欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (11): 1990-2001.DOI: 10.16553/j.cnki.issn1000-985x.2025.0095

• 研究论文 • 上一篇    下一篇

Li2O掺杂扩口微通道板框架材料离子刻蚀性能研究

李尚童1,2(), 蔡华1,2(), 贾金升2(), 赵璇1,2, 李翔1,2,3, 那天一1,2, 马梦楠1,2   

  1. 1.建筑材料行业特种光电材料重点实验室,北京 100024
    2.中国建筑材料科学研究总院有限公司,特种玻璃纤维与光电功能材料研究院,北京 100024
    3.广西大学物理科学与工程技术学院,南宁 530000
  • 收稿日期:2025-04-28 出版日期:2025-11-20 发布日期:2025-12-11
  • 通信作者: 蔡华,教授级高工。E-mail:shuangyaqing@163.com; 贾金升,教授级高工。E-mail:jjs9007@163.com
  • 作者简介:李尚童(2002—),男,甘肃省人,硕士研究生。E-mail:13951756577@163.com
  • 基金资助:
    国家重点研发计划(2022YFF0709300);国家自然科学基金(52202030);北京市高层次创新创业人才支持计划科技新星计划(20230484238)

Ion Etching Performance of Li2O Doped Tapered Microchannel Plate Frame Materials

LI Shangtong1,2(), CAI Hua1,2(), JIA Jinsheng2(), ZHAO Xuan1,2, LI Xiang1,2,3, NA Tianyi1,2, MA Mengnan1,2   

  1. 1. Key Laboratory of Special Optoelectronic Materials,China Building Materials Industry,Beijing 100024,China
    2. Institute of Special Glass Fiber and Optoelectronic Functional Materials,China Building Materials Academy,Beijing 100024,China
    3. College of Physical Science and Engineering Technology,Guangxi University,Nanning 530000,China
  • Received:2025-04-28 Online:2025-11-20 Published:2025-12-11

摘要: 扩口微通道板(T-MCPs)是一种先进的人工微结构式电子倍增材料,为了实现微通道板的扩口并避免边界尖端化,需研发耐离子刻蚀的玻璃作为其框架材料。本文基于蒙特卡洛方法与级联碰撞理论对SiO2及Li2O氧化物刻蚀性能进行模拟仿真,并对三种不同Li2O含量锂硅酸盐玻璃(32.5%、35.0%、37.5%,摩尔分数)和JGS1石英玻璃开展了Ar+刻蚀试验,采用激光扫描共聚焦显微镜(CLSM)对玻璃刻蚀形貌进行表征,仿真结果表明:在相同参数Ar+入射条件下,Li2O总溅射产额显著低于SiO2总溅射产额,表明Li2O具有更优的耐刻蚀性能,且随着Li2O比例的增加,SiO2-Li2O总溅射产额呈线性降低趋势。表征测试结果表明:石英玻璃的平均刻蚀速率高于各组分SiO2-Li2O玻璃刻蚀速率,证实Li2O的引入可显著提升材料耐刻蚀性能,且其含量与刻蚀速率呈负相关;同时,证实了玻璃刻蚀速率受角度影响显著,四组样品的刻蚀速率均在入射角度为70°左右达到峰值。本文通过模拟与实验结合的方法,明确了Li2O在提升MCP材料耐刻蚀性能中的作用规律,为开发高性能扩口MCP提供了理论依据和材料筛选策略。

关键词: 人工微结构材料; 微通道板; 锂硅酸盐玻璃; 蒙特卡洛模拟; 氧化物刻蚀; 离子溅射

Abstract: Tapered microchannel plates (T-MCPs) are advanced glass-based materials designed with artificial microstructures for electron multiplication. To achieve a tapered large open-area-ratio and avoid channel edge sharpening of microchannel plate, it is necessary to develop an ion-resistant glass as its frame material. The etching performance of SiO2 and Li2O oxides using Monte-Carlo simulations and cascade collision theory were investigated in this paper. Ar+ etching experiments were conducted on three lithium silicate glasses with Li2O contents of 32.5%, 35.0%, and 37.5% (mole fraction), as well as JGS1 quartz glass. The etching morphologies were characterized using confocal laser scanning microscopy (CLSM). Simulation results reveal that the total sputtering yield of the Li2O layer under identical Ar+ bombardment conditions, significantly lower than that of the SiO2 layer, confirming the former's superior etching resistance. Moreover, as the proportion of Li2O increases, the total simulated sputtering yield of SiO2-Li2O shows a linear decreasing trend. Experimental data demonstrate that quartz glass has higher average etching rates than these three Li2O-doped lithium silicate glasses, validating that the doped Li2O markedly enhances the etching durability of glass. A distinct negative correlation is observed between Li2O content and the etching rate. The etching rates of all samples peaked at an ion incidence angle about 70°, highlighting the critical role of angular optimization in etching efficiency. Both simulations and experiments demonstrate that doping Li2O into the frame-cladding glass of MCPs improves its ion etching resistance. This provides a robust theoretical foundation and material selection strategy for developing high-performance tapered MCPs.

Key words: artificial microstructure material; microchannel plate; lithium silicate glass; Monte-Carlo simulation; ion etching of oxide; ion sputtering

中图分类号: