欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (11): 1947-1953.DOI: 10.16553/j.cnki.issn1000-985x.2025.0104

• 研究论文 • 上一篇    下一篇

碘掺杂和多尺度结构设计提高n型碲化铅的热电性能

陈继虎1(), 路亚妮1, 聂兮2()   

  1. 1.湖北工程学院土木工程学院,孝感 432000
    2.湖北工程学院新技术学院,孝感 432000
  • 收稿日期:2025-05-19 出版日期:2025-11-20 发布日期:2025-12-11
  • 通信作者: 聂兮,硕士,讲师。E-mail:niexi510@163.com
  • 作者简介:陈继虎(1991—),男,湖北省人,实验师。E-mail:745427486@qq.com
  • 基金资助:
    国家自然科学基金(41907259)

Improving the Thermoelectric Performance of n-Type Lead Telluride Through Iodine Doping and Multi-Scale Structural Design

CHEN Jihu1(), LU Yani1, NIE Xi2()   

  1. 1. College of Civil Engineering,Hubei Engineering University,Xiaogan 432000,China
    2. College of Technology,Hubei Engineering University,Xiaogan 432000,China
  • Received:2025-05-19 Online:2025-11-20 Published:2025-12-11

摘要: 相比较p型碲化铅,n型PbTe热电性能较差,阻碍了其在中温热电应用领域的发展。本研究通过水热法合成了碘掺杂纳米级PbTe1-xIx 粉体,并结合退火和放电等离子体烧结(SPS)技术制备了多尺度结构的n型PbTe1-xIx,实现了电子-声子解耦,优化了电性能和热性能。碘掺杂所形成的固溶体在保证载流子高迁移率的同时,提高了载流子浓度,使n型PbTe1-xIx 具有较高的功率因子;同时,多尺度结构对声子的散射使材料拥有较低的晶格热导率。因此,n型PbTe1-xIx 的ZT值得到了大幅度提升,在650 K时ZT值达到了1.29。

关键词: n型碲化铅; 水热法; 碘掺杂; 多尺度结构; 热电性能

Abstract: The lower thermoelectric performance of n-type PbTe has hindered the development of mid-temperature thermoelectric applications compared to p-type lead telluride. In this study, nanometer-scale iodine doping PbTe1-xIx powder was synthesized through hydrothermal method, and a multi-scale structure of n-type PbTe1-xIx was prepared by combining annealing and spark plasma sintering (SPS) techniques, achieving electron-phonon decoupling to optimize electrical and thermal performance. The solid solution formed by iodine doping increase carrier concentration while ensuring high carrier mobility, resulting in a high power factor for n-type PbTe1-xIx. Meanwhile, the multi-scale structure facilitates phonon scattering, leading to a lower lattice thermal conductivity. Consequently, the ZT value of n-type PbTe1-xIx was significantly enhanced, reaching a ZT value of 1.29 at 650 K.

Key words: n-type lead telluride; hydrothermal method; iodine doping; multi-scale structure; thermoelectric performance

中图分类号: