| [1] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
|
| [2] |
GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
|
| [3] |
HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature, 2017, 546(7657): 270-273.
|
| [4] |
GONG C, LI L, LI Z L, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals[J]. Nature, 2017, 546(7657): 265-269.
|
| [5] |
BIKALJEVIĆ D, GONZÁLEZ-ORELLANA C, PEÑA-DÍAZ M, et al. Noncollinear magnetic order in two-dimensional NiBr2 films grown on Au(111)[J]. ACS Nano, 2021, 15(9): 14985-14995.
|
| [6] |
DAY P, DINSDALE A, KRAUSZ E R, et al. Optical and neutron diffraction study of the magnetic phase diagram of NiBr2 [J]. Journal of Physics C: Solid State Physics, 1976, 9(13): 2481-2490.
|
| [7] |
DAY P, ZIEBECK K A. Incommensurate spin structure in the low-temperature magnetic phase of NiBr2 [J]. Journal of Physics C: Solid State Physics, 1980, 13(21): L523-L525.
|
| [8] |
LU M, YAO Q S, XIAO C Y, et al. Mechanical, electronic, and magnetic properties of NiX2 (X = Cl, Br, I) layers[J]. ACS Omega, 2019, 4(3): 5714-5721.
|
| [9] |
PRAYITNO T B, NURYASIN B, BUDI E, et al. The impact of adjusted electric field on the electrical and magnetic properties of NiBr2 monolayer with density functional theory[J]. Journal of Physics: Conference Series, 2022, 2377(1): 012021.
|
| [10] |
DI SABATINO S, MOLINA-SÁNCHEZ A, ROMANIELLO P, et al. Assignment of excitonic insulators in ab initio theories: the case of NiBr2 [J]. Physical Review B, 2023, 107(11): 115121.
|
| [11] |
QUYNH NHU T, FRIÁK M, MIHÁLIKOVÁ I, et al. Profiles of oxygen and titanium point defects in ferromagnetic TiO2 films[J]. Journal of Physics D: Applied Physics, 2024, 57(26): 265302.
|
| [12] |
RI I C, RI C S, YU S H, et al. Revealing the role of intrinsic point defects in the stability of halide double perovskite Cs2AgBiBr6 [J]. Chemical Communications, 2025, 61(19): 3896-3899.
|
| [13] |
GENG K J, CHENG P F, LUO H, et al. First-principles study on intrinsic point defects properties in CaCu3Ti4O12 [J]. Computational Materials Science, 2025, 246: 113364.
|
| [14] |
许华慨, 赖国霞, 苏坤仁, 等. V和Cr掺杂的单层TiOCl2多铁性能第一性原理研究[J]. 人工晶体学报, 2025, 54(4): 629-635.
|
|
XU H K, LAI G X, SU K R, et al. First-principles study of multiferroic properties of V and Cr doped TiOCl2 monolayer[J]. Journal of Synthetic Crystals, 2025, 54(4): 629-635 (in Chinese).
|
| [15] |
XIAO Z C, GUO R J, ZHANG C M, et al. Point defect limited carrier mobility in 2D transition metal dichalcogenides[J]. ACS Nano, 2024, 18(11): 8511-8516.
|
| [16] |
CHEN G X, QU W L, ZHANG Q, et al. Electronic and magnetic properties of MoI3 monolayer effected by point defects and rare earth metal doping[J]. Journal of Physics and Chemistry of Solids, 2025, 199: 112508.
|
| [17] |
LU J S, HUANG C, LIU B J, et al. Magnetic properties of monolayer VS2 with or without point defects[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2025, 172: 116277.
|
| [18] |
SI J J, HOU Q Y, LI W Y, et al. First-principles study of the effects of Li/Na/K doping and point defects on the magnetic and photocatalytic properties of monolayer GaN (0 0 1)[J]. Vacuum, 2024, 224: 113156.
|
| [19] |
HOU Q Y, QI M D, LI C. First-principles study on the effect of point defects on the magnetic new mechanism and optical properties of the GaN:Be/Mg/Ca system[J]. Modelling and Simulation in Materials Science and Engineering, 2024, 32(3): 035031.
|
| [20] |
IRFAN AKAY T, TOFFOLI D, USTUNEL H. Combined effect of point defects and layer number on the adsorption of benzene and toluene on graphene[J]. Applied Surface Science, 2019, 480: 1063-1069.
|
| [21] |
WANG F, GU W H, CHEN J B, et al. The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability[J]. Nano Research, 2022, 15(4): 3720-3728.
|
| [22] |
AHANGARI M G, MASHHADZADEH A H, FATHALIAN M, et al. Effect of various defects on mechanical and electronic properties of zinc-oxide graphene-like structure: a DFT study[J]. Vacuum, 2019, 165: 26-34.
|
| [23] |
RAI B K, GAO S, FRONTZEK M, et al. Magnetic properties of Fe-substituted NiBr2 single crystals[J]. Journal of Magnetism and Magnetic Materials, 2022, 557: 169452.
|
| [24] |
RAI B K, CHRISTIANSON A D, MANDRUS D, et al. Influence of cobalt substitution on the magnetism of NiBr2 [J]. Physical Review Materials, 2019, 3(3): 034005.
|
| [25] |
BLÖCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979.
|
| [26] |
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775.
|
| [27] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
|
| [28] |
GUERMIT Y, DRIEF M, LANTRI T, et al. Theoretical investigation of magnetic, electronic, thermoelectric and thermodynamic properties of Fe2TaZ (Z=B, In) compounds by GGA and GGA+U approaches[J]. Computational Condensed Matter, 2020, 22: e00438.
|
| [29] |
CHEN J, WU X F, SELLONI A. Electronic structure and bonding properties of cobalt oxide in the spinel structure[J]. Physical Review B, 2011, 83(24): 245204.
|
| [30] |
WANG R, SU Y, YANG G H, et al. Bipolar doping by intrinsic defects and magnetic phase instability in monolayer CrI3 [J]. Chemistry of Materials, 2020, 32(4): 1545-1552.
|
| [31] |
WU D W, YUAN Y B, LIU S, et al. First-principles study of spin-orbital coupling induced ferroelectricity in NiBr2 [J]. Physical Review B, 2023, 108(5): 054429.
|
| [32] |
王德平, 姚爱华, 叶 松, 等. 无机材料结构与性能[M]. 上海: 同济大学出版社, 2015.
|
|
WANG D P, YAO A H, YE S, et al. Structure and properties of inorganic materials[M]. Shanghai: Tongji University Press, 2015 (in Chinese).
|
| [33] |
WANG D, WU R, FREEMAN A J. First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model[J]. Physical Review B, 1993, 47(22): 14932-14947.
|
| [34] |
YANG B S, ZHANG X L, YANG H X, et al. Nonmetallic atoms induced magnetic anisotropy in monolayer chromium trihalides[J]. The Journal of Physical Chemistry C, 2019, 123(1): 691-697.
|
| [35] |
YANG G H, WANG R, GE M, et al. Switchable electronic and enhanced magnetic properties of CrI3 edges[J]. Physical Chemistry Chemical Physics, 2021, 23(17): 10518-10523.
|
| [36] |
LIU L, REN X, XIE J H, et al. Magnetic switches via electric field in BN nanoribbons[J]. Applied Surface Science, 2019, 480: 300-307.
|