
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (11): 2002-2014.DOI: 10.16553/j.cnki.issn1000-985x.2025.0125
程鹏元1,2(
), 沈民伟1,2, 张成龙1,2, 于立冉1,2, 余子聪1,2, 王璟1,2(
)
收稿日期:2025-06-09
出版日期:2025-11-20
发布日期:2025-12-11
通信作者:
王 璟,博士,副教授。E-mail:413328086@qq.com
作者简介:程鹏元(1999—),男,辽宁省人,硕士研究生。E-mail:chengpengyuan1999@163.com
基金资助:
CHENG Pengyuan1,2(
), SHEN Minwei1,2, ZHANG Chenglong1,2, YU Liran1,2, YU Zicong1,2, WANG Jing1,2(
)
Received:2025-06-09
Online:2025-11-20
Published:2025-12-11
摘要: 针对导电高分子基底在柔性染料敏化太阳能电池(FDSSC)中因低温耐受性差(<150 ℃)导致TiO2薄膜界面结合力不足的问题,本研究首次提出三步化学烧结法在导电高分子基底上制备TiO2薄膜,并调节P25-P100 TiO2浆料与P5/HCl粘结剂的比例。结合XRD晶体结构分析,SEM、TEM形貌表征,柔性膜弯折测试,电化学工作站FDSSC光电性能测试,探讨不同配比与弯曲半径对FDSSC综合性能的影响。研究表明,当P25-P100浆料与P5/HCl粘结剂比例为4:1时,制备出团聚现象和裂缝缺陷较少的TiO2薄膜,电池的光电转换效率(PCE)达5.17%,较对照组提升109.3%,同时降低电子传输阻抗(Rct2)并延长电子传输寿命(τn);通过研究不同弯曲半径(R=250~100 mm)下的应变规律与光电性能表明,材料应变在弯曲半径250~100 mm呈现“先增后缓”的趋势,且临界转变发生在175~100 mm,当R=100 mm时电池仍保持2.34%的PCE(原始状态45.3%保留率)。本研究为FDSSC光电-机械性能优化提供了新思路。
中图分类号:
程鹏元, 沈民伟, 张成龙, 于立冉, 余子聪, 王璟. P5/HCl协同作用对低温烧结FDSSC光阳极性能调控研究[J]. 人工晶体学报, 2025, 54(11): 2002-2014.
CHENG Pengyuan, SHEN Minwei, ZHANG Chenglong, YU Liran, YU Zicong, WANG Jing. Synergistic Effect of P5/HCl on the Performance Regulation of FDSSC Photoanode Sintered at Low Temperature[J]. Journal of Synthetic Crystals, 2025, 54(11): 2002-2014.
| Length of the film/cm | Expansion amount/cm | R/mm |
|---|---|---|
| 10 | 2 | 250 |
| 10 | 3.5 | 175 |
| 10 | 5 | 100 |
表1 TiO2薄膜弯折设置参数
Table 1 TiO2 film bending setting parameters
| Length of the film/cm | Expansion amount/cm | R/mm |
|---|---|---|
| 10 | 2 | 250 |
| 10 | 3.5 | 175 |
| 10 | 5 | 100 |
| Sample | Pristine | 5:1 | 4:1 | 3:1 |
|---|---|---|---|---|
| Crack width/μm | 3.242 | 2.935 | 2.589 | 3.086 |
表2 不同比例下TiO2薄膜裂缝平均宽度
Table 2 Average crack width of TiO2 thin films with different proportions
| Sample | Pristine | 5:1 | 4:1 | 3:1 |
|---|---|---|---|---|
| Crack width/μm | 3.242 | 2.935 | 2.589 | 3.086 |
| Sample | Voc/V | Jsc/(mA·cm-2) | FF | PCE/% |
|---|---|---|---|---|
| Pristine | 0.833 | 9.715 | 0.305 | 2.47 |
| 5:1 | 0.749 | 12.640 | 0.355 | 3.36 |
| 4:1 | 0.785 | 15.923 | 0.413 | 5.17 |
| 3:1 | 0.763 | 8.660 | 0.280 | 1.85 |
表3 FDSSC光电转换参数
Table 3 FDSSC photoelectric conversion parameters
| Sample | Voc/V | Jsc/(mA·cm-2) | FF | PCE/% |
|---|---|---|---|---|
| Pristine | 0.833 | 9.715 | 0.305 | 2.47 |
| 5:1 | 0.749 | 12.640 | 0.355 | 3.36 |
| 4:1 | 0.785 | 15.923 | 0.413 | 5.17 |
| 3:1 | 0.763 | 8.660 | 0.280 | 1.85 |
| Sample | Rct2/Ω | τn/ms |
|---|---|---|
| Pristine | 13.25 | 43.6 |
| 5:1 | 8.65 | 46.4 |
| 4:1 | 6.97 | 51.7 |
| 3:1 | 17.49 | 42.4 |
表4 不同比例光阳极FDSSC的电化学阻抗谱参数
Table 4 Electrochemical impedance spectroscopy parameters of photoanode FDSSC with different proportions
| Sample | Rct2/Ω | τn/ms |
|---|---|---|
| Pristine | 13.25 | 43.6 |
| 5:1 | 8.65 | 46.4 |
| 4:1 | 6.97 | 51.7 |
| 3:1 | 17.49 | 42.4 |
| Sample | m0.5/μm | u/μm | ∣u-m0.5∣/μm | Crack percentage/% |
|---|---|---|---|---|
| Pristine | 3.143 | 4.01 | 0.867 | 1.22 |
| R=250 mm | 3.514 | 4.67 | 1.156 | 2.21 |
| R=175 mm | 4.006 | 5.22 | 1.214 | 3.01 |
| R=100 mm | 4.969 | 5.37 | 0.401 | 3.68 |
表5 不同弯曲半径下对TiO2薄膜裂缝影响参数
Table 5 Influence parameters of TiO2 thin film crack under different bending radius
| Sample | m0.5/μm | u/μm | ∣u-m0.5∣/μm | Crack percentage/% |
|---|---|---|---|---|
| Pristine | 3.143 | 4.01 | 0.867 | 1.22 |
| R=250 mm | 3.514 | 4.67 | 1.156 | 2.21 |
| R=175 mm | 4.006 | 5.22 | 1.214 | 3.01 |
| R=100 mm | 4.969 | 5.37 | 0.401 | 3.68 |
| Sample | ug/μm | ug error/μm | u/μm | ∣u-ug∣/μm | W50/μm | R2 |
|---|---|---|---|---|---|---|
| Pristine | 2.346 59 | 0.151 81 | 4.01 | 1.663 41 | 2.55 | 0.992 1 |
| R=250 mm | 3.213 57 | 0.530 27 | 4.67 | 1.456 43 | 3.15 | 0.945 88 |
| R=175 mm | 2.746 7 | 0.920 51 | 5.22 | 2.473 3 | 5.22 | 0.926 73 |
| R=100 mm | 3.757 41 | 0.119 63 | 5.37 | 1.612 59 | 5.37 | 0.911 53 |
表6 不同弯曲半径下对TiO2薄膜裂缝宽度频数分布曲线参数
Table 6 Parameters of crack width frequency distribution curve of TiO2 thin film under different bending radius
| Sample | ug/μm | ug error/μm | u/μm | ∣u-ug∣/μm | W50/μm | R2 |
|---|---|---|---|---|---|---|
| Pristine | 2.346 59 | 0.151 81 | 4.01 | 1.663 41 | 2.55 | 0.992 1 |
| R=250 mm | 3.213 57 | 0.530 27 | 4.67 | 1.456 43 | 3.15 | 0.945 88 |
| R=175 mm | 2.746 7 | 0.920 51 | 5.22 | 2.473 3 | 5.22 | 0.926 73 |
| R=100 mm | 3.757 41 | 0.119 63 | 5.37 | 1.612 59 | 5.37 | 0.911 53 |
| Sample | Voc/V | Jsc/(mA·cm-2) | FF | PCE/% |
|---|---|---|---|---|
| Pristine | 0.785 | 15.923 | 0.413 | 5.17 |
| R=250 mm | 0.741 | 14.57 | 0.352 | 3.80 |
| R=175 mm | 0.714 | 10.94 | 0.352 | 2.76 |
| R=100 mm | 0.671 | 10.101 | 0.345 | 2.34 |
表7 弯折后FDSSC光电转换参数
Table 7 Photoelectric conversion parameters of FDSSC after bending
| Sample | Voc/V | Jsc/(mA·cm-2) | FF | PCE/% |
|---|---|---|---|---|
| Pristine | 0.785 | 15.923 | 0.413 | 5.17 |
| R=250 mm | 0.741 | 14.57 | 0.352 | 3.80 |
| R=175 mm | 0.714 | 10.94 | 0.352 | 2.76 |
| R=100 mm | 0.671 | 10.101 | 0.345 | 2.34 |
| Sample | Rct2/Ω | τn/ms |
|---|---|---|
| Pristine | 6.97 | 51.7 |
| R=250 mm | 8.03 | 42.4 |
| R=175 mm | 9.59 | 41.6 |
| R=100 mm | 17.83 | 39.8 |
表8 不同弯曲条件下FDSSC的电化学阻抗谱图参数
Table 8 Electrochemical impedance spectroscopy parameters of FDSSC under different bending conditions
| Sample | Rct2/Ω | τn/ms |
|---|---|---|
| Pristine | 6.97 | 51.7 |
| R=250 mm | 8.03 | 42.4 |
| R=175 mm | 9.59 | 41.6 |
| R=100 mm | 17.83 | 39.8 |
| [1] | PANDEY A K, TYAGI V V, SELVARAJ J A, et al. Recent advances in solar photovoltaic systems for emerging trends and advanced applications[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 859-884. |
| [2] | AHMED U, ALIZADEH M, RAHIM N A, et al. A comprehensive review on counter electrodes for dye sensitized solar cells: a special focus on Pt-TCO free counter electrodes[J]. Solar Energy, 2018, 174: 1097-1125. |
| [3] | O’REGAN B, GRÄTZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740. |
| [4] | PICHOT F, PITTS J R, GREGG B A. Low-temperature sintering of TiO2 colloids: application to flexible dye-sensitized solar cells[J]. Langmuir, 2000, 16(13): 5626-5630. |
| [5] | JACOBY M. The future of low-cost solar cells[J]. Chem Eng News, 2016, 94(18): 30-35. |
| [6] | LIU J, LI Y, ARUMUGAM S, et al. Investigation of low temperature processed titanium dioxide (TiO2) films for printed dye sensitized solar cells (DSSCs) for large area flexible applications[J]. Materials Today: Proceedings, 2018, 5(5): 13846-13854. |
| [7] | PARK N G, KIM K M, KANG M G, et al. Chemical sintering of nanoparticles: a methodology for low-temperature fabrication of dye-sensitized TiO2 films[J]. Advanced Materials, 2005, 17(19): 2349-2353. |
| [8] | ZHANG P, WU C C, HAN Y S, et al. Low-temperature preparation of hierarchical structure TiO2 for flexible dye-sensitized solar cell[J]. Journal of the American Ceramic Society, 2012, 95(4): 1372-1377. |
| [9] | WEERASINGHE H C, FRANKS G V, PLESSIS J D, et al. Anomalous rheological behavior in chemically modified TiO2 colloidal pastes prepared for flexible dye-sensitized solar cells[J]. Journal of Materials Chemistry, 2010, 20(44): 9954-9961. |
| [10] | NORAZLINA A, MOHAMAD F, et al. Fabrication rutile-phased TiO2 film with different concentration of hydrochloric acid towards the performance of dye-sensitized solar cell[J]. International Journal of Integrated Engineering, 2020, 12(2): 115-124. |
| [11] | MIYASAKA T, IKEGAMI M, KIJITORI Y. Photovoltaic performance of plastic dye-sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania[J]. Journal of the Electrochemical Society, 2007, 154(5): A455. |
| [12] | YAN Y, ZHANG Y F, ZHAO Y F, et al. Review on TiO2 nanostructured photoanode and novel dyes for dye-sensitized solar cells application[J]. Journal of Materials Science, 2025, 60(11): 4975-5005. |
| [13] | SONG L X, DU P F, SHAO X L, et al. Effects of hydrochloric acid treatment of TiO2 nanoparticles/nanofibers bilayer film on the photovoltaic properties of dye-sensitized solar cells[J]. Materials Research Bulletin, 2013, 48(3): 978-982. |
| [14] | EBENEZER ANITHA A, DOTTER M. A review on liquid electrolyte stability issues for commercialization of dye-sensitized solar cells (DSSC)[J]. Energies, 2023, 16(13): 5129. |
| [15] | PENG Z Y, SUN Z, LIU Y L, et al. Enhanced current density of anatase TiO2 nanowire arrays by interface connection modulation in flexible quantum dot sensitized solar cells[J]. Journal of Alloys and Compounds, 2020, 827: 154261. |
| [16] | MUSTAFA M N, SULAIMAN Y. Review on the effect of compact layers and light scattering layers on the enhancement of dye-sensitized solar cells[J]. Solar Energy, 2021, 215: 26-43. |
| [17] | VON HAUFF E. Impedance spectroscopy for emerging photovoltaics[J]. The Journal of Physical Chemistry C, 2019, 123(18): 11329-11346. |
| [18] | RAMÍREZ-GONZÁLEZ J, SINCLAIR D C, WEST A R. Impedance and dielectric spectroscopy of functional materials: a critical evaluation of the two techniques[J]. Journal of the Electrochemical Society, 2023, 170(11): 116504. |
| [19] | NIZAMUDEEN C, KRISHNAPRIYA R, MOZUMDER M S, et al. Photovoltaic performance of MOF-derived transition metal doped titania-based photoanodes for DSSCs[J]. Scientific Reports, 2023, 13(1): 6345. |
| [20] | BISQUERT J, FABREGAT-SANTIAGO F, MORA-SERÓ I, et al. Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements[J]. The Journal of Physical Chemistry C, 2009, 113(40): 17278-17290. |
| [21] | SHARIF N F M, KADIR M Z A A, SHAFIE S, et al. Charge transport and electron recombination suppression in dye-sensitized solar cells using graphene quantum dots[J]. Results in Physics, 2019, 13: 102171. |
| [22] | KAWAKAMI R, SATO Y, MORI Y, et al. Composite thin films prepared by electrophoresis using two types of TiO2 nanoparticles[J]. Journal of the Ceramic Society of Japan, 2014, 122(1426): 436-442. |
| [23] | 曹沛禹, 李一全, 许金凯, 等. ITO/PET柔性薄膜拉伸过程裂纹产生与扩展实验分析[J]. 长春理工大学学报(自然科学版), 2019, 42(6): 44-49. |
| CAO P Y, LI Y Q, XU J K, et al. Experimental analysis of crack initiation and propagation in ITO/PET flexible films during tensile process[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2019, 42(6): 44-49 (in Chinese). | |
| [24] | KIM S, KIM J. Effect on the electrical properties of flexible solar cells influenced by mechanical bending[J]. Materials Science in Semiconductor Processing, 2024, 175: 108278. |
| [25] | DU D X, QIAO F Y, GUO Y K, et al. Photovoltaic performance of flexible perovskite solar cells under bending state[J]. Solar Energy, 2022, 245: 146-152. |
| [26] | OZAWA K, EMORI M, YAMAMOTO S, et al. Electron-hole recombination time at TiO2 single-crystal surfaces: influence of surface band bending[J]. The Journal of Physical Chemistry Letters, 2014, 5(11): 1953-1957. |
| [1] | 张家琪, 林雪玲, 田文虎, 马文杰, 张秀, 马小伟, 朱巧萍, 郝睿, 潘凤春. 应变对Si掺杂A-TiO2光学性质影响的第一性原理研究[J]. 人工晶体学报, 2025, 54(4): 617-628. |
| [2] | 王治强, 张齐, 梁颖, 王文欣, 陈琦. 磁场辅助法快捷制备Fe3O4@C光子晶体柔性复合薄膜[J]. 人工晶体学报, 2025, 54(1): 49-58. |
| [3] | 程友良, 杜慧彬, 张忠宝, 王凯. 二氧化锡基染料敏化太阳能电池电子传输模型优化及器件性能研究[J]. 人工晶体学报, 2024, 53(9): 1629-1639. |
| [4] | 李洋, 崔楠, 傅年庆, 陈有辰, 潘书生, 林生晃. 柔性透明二维光电器件在智能化信息领域中的应用[J]. 人工晶体学报, 2024, 53(7): 1087-1105. |
| [5] | 林涛海, 张军, 葛庆, 张钢强, 张美丽. 基于柔性苯二乙酸Co/Ni配位聚合物的构筑和电化学性能研究[J]. 人工晶体学报, 2024, 53(3): 534-540. |
| [6] | 朱黎原, 王志文. 稀土金属Y掺杂锐钛矿TiO2(101)表面的改性[J]. 人工晶体学报, 2024, 53(2): 286-292. |
| [7] | 李冬梅, 周俊, 吴非凡, 吕家波, 肖黎, 龚恒翔. 静电场对超声雾化热解喷涂制备TiO2薄膜的影响研究[J]. 人工晶体学报, 2024, 53(12): 2173-2180. |
| [8] | 望军, 赵雨, 郑毅, 张均, 刘晓燕. 锂离子电池柔性负极材料CoO纳米线@C/碳布复合材料[J]. 人工晶体学报, 2023, 52(6): 1154-1160. |
| [9] | 戚佳斌, 谢欣瑜, 李忠贤. 柔性无机铁电薄膜的制备及其在存储器领域应用研究进展[J]. 人工晶体学报, 2023, 52(3): 380-393. |
| [10] | 杜晶晶, 赵军伟, 施飞, 赵忠, 卢钱杰, 程晓民. 核壳结构TiO2微球的制备及其光催化性能[J]. 人工晶体学报, 2023, 52(10): 1880-1886. |
| [11] | 陈仁华, 周小坚, 张小珍, 卢紫翠, 刘华锋, 程兰兰, 汪永清. 金红石型Ti1-2xCrxMoxO2黑色色料制备及其性能研究[J]. 人工晶体学报, 2022, 51(8): 1484-1491. |
| [12] | 孟汝浩, 班新星, 左宏森, 李跃, 栗正新, 邵俊永, 孙冠男, 郝素叶, 韩少星, 张霖, 张国威, 周少杰. TiO2/g-C3N4复合粉体的制备及其在紫外/芬顿反应中光催化性能[J]. 人工晶体学报, 2022, 51(8): 1466-1472. |
| [13] | 秦英恋, 秦建芳. 基于构象灵活的N-杂环配体构筑的3D拟卤化亚铜配合物的合成、结构和性质研究[J]. 人工晶体学报, 2022, 51(6): 1059-1068. |
| [14] | 程友良, 集鑫锋, 刘萌. 染料敏化太阳能电池载流子传输的数值模拟[J]. 人工晶体学报, 2022, 51(4): 687-694. |
| [15] | 朱丽, 夏杨雯, 何莉莉, 朱晓东. 水热法制备银修饰混晶二氧化钛及其光催化性能研究[J]. 人工晶体学报, 2022, 51(4): 673-678. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS