欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2026, Vol. 55 ›› Issue (1): 151-160.DOI: 10.16553/j.cnki.issn1000-985x.2025.0144

• 研究论文 • 上一篇    下一篇

赝电容型MoO3@MXenes复合材料的增强储锂性能

陈炳淞(), 罗祥生, 蔡平雄, 晁会霞()   

  1. 北部湾大学石油与化工学院,广西绿色化工新材料与安全技术重点实验室,钦州 535011
  • 收稿日期:2025-06-30 出版日期:2026-01-20 发布日期:2026-02-05
  • 通信作者: 晁会霞
  • 作者简介:陈炳淞(2000—),男,福建省人,硕士研究生。E-mail:934232713@qq.com
  • 基金资助:
    国家自然科学基金(22369001);广西自然科学基金(2022JJA120103);钦州市科技开发项目(20223632);广西研究生教育创新计划(YCSW2025632);北部湾大学海洋科学广西一流学科

Enhancing Lithium Storage Performance of Pseudocapacitive MoO3@MXenes Composites

CHEN Bingsong(), LUO Xiangsheng, CAI Pingxiong, CHAO Huixia()   

  1. Guangxi Key Laboratory of Green Chemical Materials and Safety Technology,School of Petroleum and Chemical Engineering,Beibu Gulf University,Qinzhou 535011,China
  • Received:2025-06-30 Online:2026-01-20 Published:2026-02-05
  • Contact: CHAO Huixia

摘要: 商用石墨较低的理论比容量限制了锂离子电池性能的进一步提升,因此需要开发具有高比容量的锂离子电池负极材料。过渡金属钼氧化物(MoO3)因高理论比容量和低成本优势而受到广泛关注,但MoO3在实际应用中存在电子导电性差与反复充放电过程中体积膨胀、结构坍塌等问题,限制了其进一步应用。本文采用热合成策略使MoO3的前驱体在Ti3C2X MXenes纳米片上原位生长MoO3,构筑MoO3@MXenes复合材料用于电化学储锂。结果表明,Ti3C2X MXenes作为基底提升了MoO3的电子导电性,抑制了MoO3在充放电过程中的体积膨胀,增强了MoO3的赝电容特性、倍率性能和循环稳定性。1.2 mV·s-1扫速下MoO3@MXenes复合材料电容贡献率为85.6%,1.0 A·g-1电流下充放电循环800次后MoO3@MXenes复合材料仍具有565 mA·h·g-1的高比容量,当电流密度增加40倍时其比容量保持率为47.5%。本研究研发的MoO3@MXenes复合材料以赝电容储能为主,电荷转移电阻低,倍率性能和循环稳定性良好,该复合材料的制备方法为钼氧化物电极材料提供了新思路。

关键词: 钼氧化物; 热合成策略; Ti3C2X MXene; 原位生长; 赝电容特性; 储锂性能

Abstract: The further development of lithium-ion battery performance is restricted by the limited theoretical specific capacity of commercial graphite, thus highlighting the urgent need to develop lithium-ion battery anode materials with high specific capacity. Transition metal molybdenum oxide (MoO3) has attracted considerable attention owing to its advantages of high theoretical specific capacity and low cost. However, MoO3 has problems such as poor electronic conductivity, volume expansion and structural collapse during repeated charge-discharge cycles, which limits its further application. In this paper, the precursor of MoO3 was in-situ grown on Ti3C2X MXenes nanosheets by thermal synthesis strategy to construct MoO3@MXenes composites for electrochemical lithium storage. The results show that Ti3C2X MXenes as a substrate improves the electronic conductivity of MoO3, inhibits the volume expansion of MoO3 during charge-discharge cycles, and enhances the pseudocapacitive characteristics, rate performance and cycle stability of MoO3. The contribution rate of MoO3@MXenes composites is 85.6% at a scan rate of 1.2 mV·s-1. After 800 charge-discharge cycles at a current density of 1.0 A·g-1, MoO3@MXenes composites still have a high specific capacity of 565 mA·h·g-1. When the current density is increased by 40 times, the capacity retention rate is 47.5%. The MoO?@MXene composite developed in the study is mainly based on pseudocapacitive eneray storage, with low charge-transfer resistance, excellent rate performance and cycling stability. This synthesis strategy of the composite material offers a new method for molybdenum oxide electrode materials.

Key words: molybdenum oxide; thermal synthesis strategy; Ti3C2X MXene; in situ growth; pseudocapacitive characteristic; lithium storage performance

中图分类号: