| [1] |
SUN J L, ZHOU H H, HUANG Z Y. The future nickel metal supply for lithium-ion batteries[J]. Green Chemistry, 2024, 26(12): 6926-6943.
|
| [2] |
HUANG Z X, LIU X, ZHENG Y, et al. Boosting efficient and low-energy solid phase regeneration for single crystal LiNi0.6Co0.2Mn0.2O2 via highly selective leaching and its industrial application[J]. Chemical Engineering Journal, 2023, 451: 139039.
|
| [3] |
TAN S S, JIANG Y L, NI S Y, et al. Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries[J]. National Science Review, 2022, 9(11): nwac183.
|
| [4] |
LI S L, ZHANG J Q, CHAO H X, et al. High energy density lithium-ion capacitor enabled by nitrogen-doped amorphous carbon linked hierarchically porous Co3O4 nanofibers anode and porous carbon polyhedron cathode[J]. Journal of Alloys and Compounds, 2022, 918: 165726.
|
| [5] |
WANG C Y, LIU T, YANG X G, et al. Fast charging of energy-dense lithium-ion batteries[J]. Nature, 2022, 611(7936): 485-490.
|
| [6] |
PRAMITHA A, RAVIPRAKASH Y. Recent developments and viable approaches for high-performance supercapacitors using transition metal-based electrode materials[J]. Journal of Energy Storage, 2022, 49: 104120.
|
| [7] |
RAUT B, AHMED M S, KIM H Y, et al. Battery-type transition metal oxides in hybrid supercapacitors: synthesis and applications[J]. Batteries, 2025, 11(2): 60.
|
| [8] |
LI Z, WANG C, CHEN X Z, et al. MoO x nanoparticles anchored on N-doped porous carbon as Li-ion battery electrode[J]. Chemical Engineering Journal, 2020, 381: 122588.
|
| [9] |
CHO J S. Large scale process for low crystalline MoO3-carbon composite microspheres prepared by one-step spray pyrolysis for anodes in lithium-ion batteries[J]. Nanomaterials, 2019, 9(4): 539.
|
| [10] |
ZHANG Z, CHEN X, ZHANG G X, et al. Synthesis of MoO3/V2O5/C composite as novel anode for Li-ion battery application[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(5): 2911-2916.
|
| [11] |
RONG Z G, FANG C F, ZHANG Z Y, et al. One-step synthesis of carbon-coated monocrystal molybdenum oxides nanocomposite as high-capacity anode materials for lithium-ion batteries[J]. Journal of Materiomics, 2021, 7(3): 498-507.
|
| [12] |
YU L H, TAO X, SUN D N, et al. In situ phase transformation to form MoO3-MoS2 heterostructure with enhanced printable sodium ion storage[J]. Advanced Functional Materials, 2024, 34(29): 2311471.
|
| [13] |
HE Y C, TANG H W, HUANG Y F, et al. Valence modulation and morphological engineering of MoO3 as high-performance cathode for aqueous zinc ion batteries[J]. Electrochimica Acta, 2023, 465: 142988.
|
| [14] |
LI K C, HUANG Y H, XU H T, et al. Two-dimensional thin-flake MoO x /pinecone-derived carbon composite for excellent potassium ion storage[J]. Solid State Sciences, 2024, 153: 107571.
|
| [15] |
SUN X L, YANG J C, CHEN Y, et al. Interconnected MoO2/MoS2@NC nanosheets as anodes with high-rate and long-life for lithium-ion and sodium-ion batteries[J]. Chemical Engineering Journal, 2024, 495: 153418.
|
| [16] |
ZHANG L F, LI S, RUAN H, et al. Enhanced interface protection of freestanding Si anodes in carbon fiber nanotube by introducing MoO3 buffering layers[J]. Surfaces and Interfaces, 2024, 48: 104369.
|
| [17] |
GUO Z X, ZHANG L X, JIU H F, et al. TiO2-modified two-dimensional composite of nitrogen-doped molybdenum trioxide nanosheets as a high-performance anode for lithium-ion batteries[J]. Dalton Transactions, 2024, 53(12): 5427-5434.
|
| [18] |
LI Z, GAO L, ZHANG C K, et al. Copper incorporation induced oxygen vacancy MoO3 anode and Zn dendrite inhibitor for high performance aqueous zinc ion batteries[J]. Journal of Energy Storage, 2025, 119: 116336.
|
| [19] |
HUANG C X, JIANG Z, LIU F X, et al. Oxygen vacancies boosted hydronium intercalation: a paradigm shift in aluminum-based batteries[J]. Angewandte Chemie International Edition, 2024, 63(26): e202405592.
|
| [20] |
LI J H, WEI L, CUI X K, et al. Hydrothermal synthesis of SnO2/MoO3- x /rGO ternary nanocomposites as a high-performance anode for lithium ion batteries[J]. Electrochimica Acta, 2024, 503: 144907.
|
| [21] |
LV Y, SU Q M, ZHANG K, et al. Crystalline/amorphous heterostructure CoNi/MoO3- x as an bidirectional catalyst for polysulfide reaction to enable high-sulfur-loading lithium-sulfur battery[J]. Sustainable Materials and Technologies, 2025, 43: e01307.
|
| [22] |
SHAHZAD R F, RASUL S, MAMLOUK M, et al. Designing molybdenum trioxide and hard carbon architecture for stable lithium-ion battery anodes[J]. Advanced Materials Interfaces, 2024, 11(31): 2400258.
|
| [23] |
NATU V, BENCHAKAR M, CANAFF C, et al. A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes[J]. Matter, 2021, 4(4): 1224-1251.
|
| [24] |
SHENG M H, BIN X Q, YANG Y W, et al. A green and fluorine-free fabrication of 3D self-supporting MXene by combining anodic electrochemical in situ etching with cathodic electrophoretic deposition for electrocatalytic hydrogen evolution[J]. Advanced Materials Technologies, 2024, 9(3): 2301694.
|
| [25] |
LI Y H, SUN H, CHENG X P, et al. In-situ TEM experiments and first-principles studies on the electrochemical and mechanical behaviors of α-MoO3 in Li-ion batteries[J]. Nano Energy, 2016, 27: 95-102.
|
| [26] |
YAN Y, LI S B, YUAN B, et al. Flowerlike Ti-doped MoO3 conductive anode fabricated by a novel NiTi dealloying method: greatly enhanced reversibility of the conversion and intercalation reaction[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8240-8248.
|
| [27] |
XUE X Y, CHEN Z H, XING L L, et al. SnO2/α-MoO3 core-shell nanobelts and their extraordinarily high reversible capacity as lithium-ion battery anodes[J]. Chemical Communications, 2011, 47(18): 5205-5207.
|
| [28] |
QU G, WANG J, LIU G Y, et al. Vanadium doping enhanced electrochemical performance of molybdenum oxide in lithium-ion batteries[J]. Advanced Functional Materials, 2019, 29(2): 1805227.
|
| [29] |
WANG H W, ZHU C R, CHAO D L, et al. Nonaqueous hybrid lithium-ion and sodium-ion capacitors[J]. Advanced Materials, 2017, 29(46): 1702093.
|
| [30] |
CHEN J T, YANG B J, HOU H J, et al. Disordered, large interlayer spacing, and oxygen-rich carbon nanosheets for potassium ion hybrid capacitor[J]. Advanced Energy Materials, 2019, 9(19): 1803894.
|
| [31] |
WANG R T, LANG J W, ZHANG P, et al. Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors[J]. Advanced Functional Materials, 2015, 25(15): 2270-2278.
|
| [32] |
XIONG P, ZHANG X Y, ZHANG F, et al. Two-dimensional unilamellar cation-deficient metal oxide nanosheet superlattices for high-rate sodium ion energy storage[J]. ACS Nano, 2018, 12(12): 12337-12346.
|
| [33] |
SHAHSANK M, BHOJYA NAIK H S, SUMEDHA H N, et al. Implementing an in situ carbon formation of MoO3 nanoparticles for high performance lithium-ion battery[J]. Ceramics International, 2021, 47(7): 10261-10267.
|
| [34] |
JI X, YAO T H, LIU X, et al. Atomic layer deposition of aluminum-doped zinc oxide onto MoO3 nanorods toward enhanced lithium storage performance[J]. Scripta Materialia, 2024, 238: 115769.
|
| [35] |
王军勇. 过渡金属氧化物负极材料的设计、制备及储锂性能研究[D]. 上海: 华东师范大学, 2019: 59-61.
|
|
WANG J Y. Design and preparation of transition metal oxide anode materials for lithium storage application[D]. Shanghai: East China Normal University, 2019: 59-61 (in Chinese).
|
| [36] |
ZHANG Y, CHEN P H, GAO X, et al. Nitrogen-doped graphene ribbon assembled core-sheath MnO@graphene scrolls as hierarchically ordered 3D porous electrodes for fast and durable lithium storage[J]. Advanced Functional Materials, 2016, 26(43): 7754-7765.
|