
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (10): 1671-1686.DOI: 10.16553/j.cnki.issn1000-985x.2025.0184
收稿日期:2025-08-22
出版日期:2025-10-20
发布日期:2025-11-11
通信作者:
梁 飞,博士,教授。E-mail:liangfei@sdu.edu.cn;于浩海,博士,教授。E-mail:haohaiyu@sdu.edu.cn
作者简介:郭小天(2000—),女,山东省人,博士研究生。E-mail:guoxiaotian@mail.sdu.edu.cn基金资助:
GUO Xiaotian(
), LIANG Fei(
), YU Haohai(
), ZHANG Huaijin
Received:2025-08-22
Online:2025-10-20
Published:2025-11-11
摘要: 三阶非线性光学效应是一种非常基础且具有广泛应用的光学现象,在激光波长拓展、激光调制、光谱分析等众多领域具有重要的应用价值。直接三倍频(THG)是一种典型的三阶非线性光学过程,可以将激光波长缩短至基频波长的1/3,光子能量提高3倍。通过THG过程能够将红外光向更短波长的可见、紫外乃至真空紫外转换,提高激光器件集成度,制作尺寸更小、性能更优的电子和光学元件,满足激光加工、制造等前沿领域对特定波长激光的重要需求。此外,利用THG的逆过程可以实现光学参量下转换,产生多个光子的纠缠态,有望制备高效率、高维度的量子光源,对下一代量子密钥分发、量子隐形传态等前沿应用具有重要意义。本文从直接三倍频产生的基本原理出发,分析了THG过程需要满足的能量守恒和动量守恒条件,总结了体块非线性晶体、拓扑半金属、近零介电常数薄膜和硅基超表面等材料体系THG的发展现状,并综合比较了各类材料体系实现THG的波长范围和转换效率。最后讨论了非线性晶体实现高效THG面临的挑战,并对直接THG的前景和趋势进行了展望。
中图分类号:
郭小天, 梁飞, 于浩海, 张怀金. 基于三阶非线性光学效应实现直接三倍频研究进展[J]. 人工晶体学报, 2025, 54(10): 1671-1686.
GUO Xiaotian, LIANG Fei, YU Haohai, ZHANG Huaijin. Progress in Direct Third-Harmonic Generation Based on Third-Order Nonlinear Optical Effect[J]. Journal of Synthetic Crystals, 2025, 54(10): 1671-1686.
图1 直接三倍频产生的原理(a)、能量守恒(b)和动量守恒(c)示意图
Fig.1 Schematic diagrams of the principle of direct THG (a), energy conservation (b) and momentum conservation (c)
图3 (a)ZrSiS的晶体结构;(b)SHG和THG实验配置示意图;(c)SHG、THG及基频激光的光谱;(d)ZrSiS表面非线性光学转换示意图[38]
Fig.3 (a) Crystal structure of ZrSiS; (b) schematic diagram of the SHG and THG experimental configuration; (c) spectra of SHG, THG and fundamental laser; (d) schematic diagram of nonlinear optical conversion on the surface of ZrSiS[38]
图4 二硫化钼薄片的多光子Mapping图像[55]。MoS2的SHG(a)和THG(b)图像;(c)峰值功率密约为30 GW/cm2时,单层二硫化钼(1L-MoS2)的非线性信号光谱
Fig.4 Multi-photon mapping images of molybdenum disulfide thin films[55]. SHG (a) and THG (b) images of MoS2; (c) nonlinear signal spectrum of single-layer molybdenum disulfide (1L-MoS2) at a peak power density of approximately 30 GW/cm2
图5 (a)ITO薄膜介电常数实部和虚部与波长关系的计算;(b)ITO薄膜光电场增强随入射波长的变化;(c)1.03 μm波长下,薄膜结构的场增强随位置变化的计算结果;(d)由硅衬底和ITO薄膜组成的ENZ样品上高次谐波产生示意图;(e)不同入射泵浦功率密度下的高次谐波光谱[39]
Fig.5 (a) Calculations of the real and imaginary parts of the dielectric constant of ITO films in relation to wavelength; (b) variation of the photonic field enhancement of ITO films with incident wavelength; (c) calculation results of the field enhancement of the film structure at a wavelength of 1.03 μm, varying with position; (d) schematic diagram of the generation of high-order harmonics on the ENZ sample composed of a silicon substrate and ITO film; (e) spectra of high-order harmonics under different incident pump power densities[39]
图6 THG产生过程的波长和功率依赖性[40]。(a)120 fs脉冲的归一化三次谐波转换效率随中红外泵浦波长的变化;(b)7.3 μm共振泵浦产生的三次谐波信号的归一化强度依赖性
Fig.6 Wavelength and power dependence of THG process[40]. (a) Normalized third harmonic conversion efficiency of 120 fs pulses as a function of mid-infrared pump wavelength; (b) normalized intensity dependence of the third harmonic signal generated by 7.3 μm resonant pumping
图7 不同结构非线性超表面实现直接三倍频示意图[69,71?73]。(a)椭圆形纳米谐振器组成的非晶硅超表面;(b)超薄硅超结构;(c)周期性缺口硅超表面阵列;(d)quasi-BICs硅基超表面
Fig.7 Schematic diagram of direct THG achieved by different structural nonlinear metamaterials[69,71?73]. (a) Amorphous silicon metamaterial composed of elliptical nano-resonators; (b) ultrathin silicon superstructure; (c) periodic gap silicon metamaterial array; (d) quasi-BICs silicon-based metamaterial
| 非线性材料 | 样品方向或尺寸 | 非线性系数χ(3)/(m2·V-2) | 基频参数 | 泵浦密度/(GW·cm-2) | THG波长/nm | 转换效率 | 参考 文献 |
|---|---|---|---|---|---|---|---|
| CaCO3 | 相位匹配方向57° | 1.4×10-23 | 1 J/pulse | — | 231 | — | [ |
| TiO2 | II类相位匹配方向d=5 mm | 9.7×10-20 | 10 Hz, 15 ps | 0.000 9 | 613.2 | 1×10-2 | [ |
| α-BBO | II类相位匹配方向d=0.5 mm | 8.79×10-23 | 1 kHz, 120 fs | — | 266 | 2.5×10-2 | [ |
| KTP | Y-cut,d=8.6 mm | 8.05×10-22 | 10 Hz, 15 ps | 0.4 | 531 | 3.4×10-2 | [ |
| β-BBO | 相位匹配方向45.2° d=10 mm | 8.8×10-23 | 1 kHz, 200 fs | 264 | 300~415 | 1.03×10-2 | [ |
| Nodal-line semimetal ZrSiS | — | 7.47×10-12 | 1 kHz, 120 fs | 7.6×10-3 | 433.3 | 4.3×10-4 | [ |
| MoS2 monolayer | d=0.65 nm | 2.4×10-19 | 50 MHz, 150 fs | — | 520 | 6.6×10-10 | [ |
| WS2 monolayer | d=~0.7 nm | 3.6×10-19 | 50 MHz, 150 fs | — | 520 | 2.8×10-10 | [ |
| MoS2 monolayer | d=0.65 nm | 2.4×10-19 | 50 MHz, 150 fs | 30 | 520 | 4.76×10-10 | [ |
| ITO film | d=103 nm | 2.48×10-20 | 200 kHz, 250 fs | 51.4 | 343 | 7.05×10-4 | [ |
| AZO monolayer | d=100 nm | 4.62×10-22 | 1 kHz, 100 fs | 6.37×10-5 | 516.7 | 2.8×10-4 | [ |
| Dielectric nanofilm | d=300 nm | 2.8×10-22 | 100 kHz, 100 fs | ~6 | 146~190 | 2×10-7 | [ |
| Silicon metasurface | d=590 nm | 2.45×10-19 | 80 MHz, 80 fs | 1.2 | 520 | 2.8×10-7 | [ |
| Silicon metasurface | d=350 nm | 2.45×10-19 | 80 MHz, 140~200 fs | 23.3 | 427 | 2.2×10-6 | [ |
| Dielectric metasurface | d=220 nm | — | — | 5.85 | 513 | 1.03×10-5 | [ |
| Si Meta-structure | d=100 nm | 2.45×10-19 | 80 MHz, 100 fs | 13.3 | 309 | 6.12×10-5 | [ |
| Silicon metasurface | 缺口周期500 nm | 2.45×10-19 | 100 kHz, 200 fs | 5.31 | 343 | 7.71×10-5 | [ |
表1 实现三倍频产生的非线性材料综合性能比较
Table 1 Comparison of comprehensive performance of nonlinear materials for THG
| 非线性材料 | 样品方向或尺寸 | 非线性系数χ(3)/(m2·V-2) | 基频参数 | 泵浦密度/(GW·cm-2) | THG波长/nm | 转换效率 | 参考 文献 |
|---|---|---|---|---|---|---|---|
| CaCO3 | 相位匹配方向57° | 1.4×10-23 | 1 J/pulse | — | 231 | — | [ |
| TiO2 | II类相位匹配方向d=5 mm | 9.7×10-20 | 10 Hz, 15 ps | 0.000 9 | 613.2 | 1×10-2 | [ |
| α-BBO | II类相位匹配方向d=0.5 mm | 8.79×10-23 | 1 kHz, 120 fs | — | 266 | 2.5×10-2 | [ |
| KTP | Y-cut,d=8.6 mm | 8.05×10-22 | 10 Hz, 15 ps | 0.4 | 531 | 3.4×10-2 | [ |
| β-BBO | 相位匹配方向45.2° d=10 mm | 8.8×10-23 | 1 kHz, 200 fs | 264 | 300~415 | 1.03×10-2 | [ |
| Nodal-line semimetal ZrSiS | — | 7.47×10-12 | 1 kHz, 120 fs | 7.6×10-3 | 433.3 | 4.3×10-4 | [ |
| MoS2 monolayer | d=0.65 nm | 2.4×10-19 | 50 MHz, 150 fs | — | 520 | 6.6×10-10 | [ |
| WS2 monolayer | d=~0.7 nm | 3.6×10-19 | 50 MHz, 150 fs | — | 520 | 2.8×10-10 | [ |
| MoS2 monolayer | d=0.65 nm | 2.4×10-19 | 50 MHz, 150 fs | 30 | 520 | 4.76×10-10 | [ |
| ITO film | d=103 nm | 2.48×10-20 | 200 kHz, 250 fs | 51.4 | 343 | 7.05×10-4 | [ |
| AZO monolayer | d=100 nm | 4.62×10-22 | 1 kHz, 100 fs | 6.37×10-5 | 516.7 | 2.8×10-4 | [ |
| Dielectric nanofilm | d=300 nm | 2.8×10-22 | 100 kHz, 100 fs | ~6 | 146~190 | 2×10-7 | [ |
| Silicon metasurface | d=590 nm | 2.45×10-19 | 80 MHz, 80 fs | 1.2 | 520 | 2.8×10-7 | [ |
| Silicon metasurface | d=350 nm | 2.45×10-19 | 80 MHz, 140~200 fs | 23.3 | 427 | 2.2×10-6 | [ |
| Dielectric metasurface | d=220 nm | — | — | 5.85 | 513 | 1.03×10-5 | [ |
| Si Meta-structure | d=100 nm | 2.45×10-19 | 80 MHz, 100 fs | 13.3 | 309 | 6.12×10-5 | [ |
| Silicon metasurface | 缺口周期500 nm | 2.45×10-19 | 100 kHz, 200 fs | 5.31 | 343 | 7.71×10-5 | [ |
图10 (a)三光子纠缠态的三种生成方案;(b)KTP晶体实现单模激发三光子产生[83,85]
Fig.10 (a) Three schemes for generating tri-photon entangled states; (b) KTP crystal for achieving single-mode excitation of tri-photon generation[83,85]
| [1] |
ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 1962, 127(6): 1918-1939.
DOI URL |
| [2] |
BLOEMBERGEN N, PERSHAN P S. Light waves at the boundary of nonlinear media[J]. Physical Review, 1962, 128(2): 606-622.
DOI URL |
| [3] |
BLOEMBERGEN N, SHEN Y R. Quantum-theoretical comparison of nonlinear susceptibilities in parametric media, lasers, and Raman lasers[J]. Physical Review, 1964, 133(1A): A37-A49.
DOI URL |
| [4] |
FRANKEN P A, HILL A E, PETERS C W, et al. Generation of optical harmonics[J]. Physical Review Letters, 1961, 7(4): 118-119.
DOI URL |
| [5] |
BLOEMBERGEN N. Nonlinear optics: past, present, and future[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 876-880.
DOI URL |
| [6] |
STEGEMAN G I, STOLEN R H. Waveguides and fibers for nonlinear optics[J]. Journal of the Optical Society of America B, 1989, 6(4): 652-662.
DOI URL |
| [7] | WALLS D F, TINDLE C T. Nonlinear quantum effects in optics[J]. Journal of Physics A: General Physics, 1972, 5(4): 534-545. |
| [8] | 李淳飞. 非线性光学[M]. 北京: 电子工业出版社, 2017. |
| LI C F. Nonlinear optics[M]. Beijing: Electronics Industry Press, 2017 (in Chinese). | |
| [9] |
MARTORELL J, VILASECA R, CORBALÁN R. Second harmonic generation in a photonic crystal[J]. Applied Physics Letters, 1997, 70(6): 702-704.
DOI URL |
| [10] |
BERGMAN J G, ASHKIN A, BALLMAN A A, et al. Curie temperature, birefringence, and phase-matching temperature variations in LiNbO3 as a function of melt stoichiometry[J]. Applied Physics Letters, 1968, 12(3): 92-94.
DOI URL |
| [11] | BERGFELD S, DAUM W. Second-harmonic generation in GaAs: experiment versus theoretical predictions of χ x y z 2 [J]. Physical Review Letters, 2003, 90(3): 036801. |
| [12] | MORITA A. Theory of sum frequency generation spectroscopy[M]. Cham: Springer Nature Singapore, 2018. |
| [13] |
SHEN Y R. Surface properties probed by second-harmonic and sum-frequency generation[J]. Nature, 1989, 337(6207): 519-525.
DOI |
| [14] |
VIDAL F, TADJEDDINE A. Sum-frequency generation spectroscopy of interfaces[J]. Reports on Progress in Physics, 2005, 68(5): 1095-1127.
DOI URL |
| [15] |
ZIMMERMANN M, GOHLE C, HOLZWARTH R, et al. Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation[J]. Optics Letters, 2004, 29(3): 310-312.
DOI URL |
| [16] |
CRUZ F C, MASER D L, JOHNSON T, et al. Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy[J]. Optics Express, 2015, 23(20): 26814-26824.
DOI PMID |
| [17] |
LEINDECKER N, MARANDI A, BYER R L, et al. Broadband degenerate OPO for mid-infrared frequency comb generation[J]. Optics Express, 2011, 19(7): 6296-6302.
DOI PMID |
| [18] |
HEINER Z, PETROV V, PANYUTIN V L, et al. Efficient generation of few-cycle pulses beyond 10 μm from an optical parametric amplifier pumped by a 1-µm laser system[J]. Scientific Reports, 2022, 12(1): 5082-5088.
DOI |
| [19] | YANAGIMOTO R, NEHRA R, HAMERLY R, et al. Quantum nondemolition measurements with optical parametric amplifiers for ultrafast universal quantum information processing[J]. PRX Quantum, 2023, 4: 010333. |
| [20] |
SOLIEMAN A, MOHARRAM A H, AEGERTER M A. Patterning of nanoparticulate transparent conductive ITO films using UV light irradiation and UV laser beam writing[J]. Applied Surface Science, 2010, 256(6): 1925-1929.
DOI URL |
| [21] |
PAN C T, LIU Z H, WU Y J. Embedded dots inside glass for optical film using UV laser of ultrafast laser pulse[J]. Optics and Lasers in Engineering, 2011, 49(7): 764-772.
DOI URL |
| [22] |
CHO K, CHOI J, KO C, et al. 257 nm deep UV femtosecond laser ablation with minimized crack and chipping on display ultra-thin glass[J]. International Journal of Precision Engineering and Manufacturing, 2024, 25(2): 271-283.
DOI |
| [23] | SOLNTSEV A S, KUMAR P, PERTSCH T, et al. LiNbO3 waveguides for integrated SPDC spectroscopy[J]. APL Photonics, 2018, 3(2): 021301. |
| [24] |
KIM I, LEE D, LEE K J. Study of type II SPDC in lithium niobate for high spectral purity photon pair generation[J]. Crystals, 2021, 11(4): 406-418.
DOI URL |
| [25] |
KWIAT P G, MATTLE K, WEINFURTER H, et al. New high-intensity source of polarization-entangled photon pairs[J]. Physical Review Letters, 1995, 75(24): 4337-4341.
PMID |
| [26] | JIA W H, SAERENS G, TALTS Ü L, et al. Polarization-entangled Bell state generation from an epsilon-near-zero metasurface[J]. Science Advances, 2025, 11(8): eads3576. |
| [27] |
HENSEN B, KALB N, BLOK M S, et al. Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis[J]. Scientific Reports, 2016, 6: 30289.
DOI |
| [28] |
NALWA H S. Organic materials for third-order nonlinear optics[J]. Advanced Materials, 1993, 5(5): 341-358.
DOI URL |
| [29] |
STEGEMAN G I, WRIGHT E M, FINLAYSON N, et al. Third order nonlinear integrated optics[J]. Journal of Lightwave Technology, 1988, 6(6): 953-970.
DOI URL |
| [30] |
ZHOU L L, FU H G, LV T, et al. Nonlinear optical characterization of 2D materials[J]. Nanomaterials, 2020, 10(11): 2263.
DOI URL |
| [31] | SURESH S, RAMANAND A, JAYARAMAN D, et al. Review on theoretical aspect of nonlinear optics[J]. Reviews on Advanced Materials Science, 2012, 30: 175-183. |
| [32] |
TROFIMOV V A, KHARITONOV D M, FEDOTOV M V, et al. High efficiency third-harmonic generation in a medium with quadratic susceptibility due to cubic-like nonlinearity caused by cascaded second-harmonic generation[J]. Applied Sciences, 2023, 13(12): 7341-7387.
DOI URL |
| [33] |
HÜBEL H, HAMEL D R, FEDRIZZI A, et al. Direct generation of photon triplets using cascaded photon-pair sources[J]. Nature, 2010, 466(7306): 601-603.
DOI |
| [34] |
TERHUNE R W, MAKER P D, SAVAGE C M. Optical harmonic generation in calcite[J]. Physical Review Letters, 1962, 8(10): 404-406.
DOI URL |
| [35] |
BORNE A, SEGONDS P, BOULANGER B, et al. Refractive indices, phase-matching directions and third order nonlinear coefficients of rutile TiO2 from third harmonic generation[J]. Optical Materials Express, 2012, 2(12): 1797-1802.
DOI URL |
| [36] |
SHI M J, ZHANG G, LI B X, et al. Efficient frequency conversion for cubic harmonic generation at 266 nm in centrosymmetric α-BBO crystal[J]. Optics Letters, 2018, 43(8): 1734-1737.
DOI URL |
| [37] |
VERNAY A, BOUTOU V, FÉLIX C, et al. Birefringence phase-matched direct third-harmonic generation in a ridge optical waveguide based on a KTiOPO4 single crystal[J]. Optics Express, 2021, 29(14): 22266-22274.
DOI URL |
| [38] |
CHI S M, LIANG F, CHEN H X, et al. Surface nonlinear optics on centrosymmetric Dirac nodal-line semimetal ZrSiS[J]. Advanced Materials, 2020, 32(2): 1904498.
DOI URL |
| [39] |
TIAN W D, LIANG F, LU D Z, et al. Highly efficient ultraviolet high-harmonic generation from epsilon-near-zero indium tin oxide films[J]. Photonics Research, 2021, 9(3): 317-323.
DOI URL |
| [40] |
GINSBERG J S, JADIDI M M, ZHANG J, et al. Phonon-enhanced nonlinearities in hexagonal boron nitride[J]. Nature Communications, 2023, 14(1): 7685.
DOI PMID |
| [41] |
CHEN S M, RAHMANI M, LI K F, et al. Third harmonic generation enhanced by multipolar interference in complementary silicon metasurfaces[J]. ACS Photonics, 2018, 5(5): 1671-1675.
DOI URL |
| [42] |
GAO Y S, FAN Y B, WANG Y J, et al. Nonlinear holographic all-dielectric metasurfaces[J]. Nano Letters, 2018, 18(12): 8054-8061.
DOI PMID |
| [43] |
PIRANDOLA S, ANDERSEN U L, BANCHI L, et al. Advances in quantum cryptography[J]. Advances in Optics and Photonics, 2020, 12(4): 1012-1236.
DOI URL |
| [44] |
SAHU S K, MAZUMDAR K. State-of-the-art analysis of quantum cryptography: applications and future prospects[J]. Frontiers in Physics, 2024, 12: 1456491.
DOI URL |
| [45] | SHEN Y R. Principles of nonlinear optics[M]. New York: Wiley, 1984. |
| [46] | BOYD R W, GAETA A L, GIESE E. Nonlinear optics[M]. Berlin: Springer, 2008: 1097-1110. |
| [47] |
ECKARDT R, REINTJES J. Phase matching limitations of high efficiency second harmonic generation[J]. IEEE Journal of Quantum Electronics, 1984, 20(10): 1178-1187.
DOI URL |
| [48] |
GIORDMAINE J A. Mixing of light beams in crystals[J]. Physical Review Letters, 1962, 8(1): 19-20.
DOI URL |
| [49] |
KLEINMAN D A. Theory of second harmonic generation of light[J]. Physical Review, 1962, 128(4): 1761-1775.
DOI URL |
| [50] |
ZHAO X Z, WU Z X, XU X G, et al. Direct third-harmonic generation of β-BBO crystal to generate a tunable ultraviolet laser[J]. Optics Letters, 2025, 50(16): 5014-5017.
DOI URL |
| [51] |
FANG H H, YANG J, FENG J, et al. Functional organic single crystals for solid-state laser applications[J]. Laser & Photonics Reviews, 2014, 8(5): 687-715.
DOI URL |
| [52] |
DAS S, BHAR G C, GANGOPADHYAY S, et al. Linear and nonlinear optical properties of ZnGeP2 crystal for infrared laser device applications: revisited[J]. Applied Optics, 2003, 42(21): 4335-4340.
DOI URL |
| [53] | XIA H M, WU S, LIANG B K, et al. Nonlinear optical signatures of topological Dirac fermion[J]. Science Advances, 2024, 10(25): eadp0575. |
| [54] | DI GASPARE A, GHAYEB ZAMHARIR S, KNOX C, et al. Second and third harmonic generation in topological insulator-based van der Waals metamaterials[J]. Light, Science & Applications, 2025, 14(1): 337-349. |
| [55] |
SÄYNÄTJOKI A, KARVONEN L, ROSTAMI H, et al. Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers[J]. Nature Communications, 2017, 8(1): 893-901.
DOI |
| [56] |
AUTERE A, JUSSILA H, MARINI A, et al. Optical harmonic generation in monolayer group-VI transition metal dichalcogenides[J]. Physical Review B, 2018, 98(11): 115426.
DOI URL |
| [57] |
TROVATELLO C, FERRANTE C, YANG B R, et al. Quasi-phase-matched up- and down-conversion in periodically poled layered semiconductors[J]. Nature Photonics, 2025, 19(3): 291-299.
DOI |
| [58] |
XU J, PENG Y X, QIAN S Y, et al. Microstructured all-optical switching based on two-dimensional material[J]. Coatings, 2023, 13(5): 876-900.
DOI URL |
| [59] |
ZHENG C L, NI P N, XIE Y Y, et al. On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces[J]. Opto-Electronic Advances, 2025, 8(1): 240159.
DOI URL |
| [60] |
JAVANI M H, STOCKMAN M I. Real and imaginary properties of epsilon-near-zero materials[J]. Physical Review Letters, 2016, 117(10): 107404.
DOI URL |
| [61] |
VASSANT S, HUGONIN J P, MARQUIER F, et al. Berreman mode and epsilon near zero mode[J]. Optics Express, 2012, 20(21): 23971-23977.
DOI PMID |
| [62] |
CAMPIONE S, BRENER I, MARQUIER F. Theory of epsilon-near-zero modes in ultrathin films[J]. Physical Review B, 2015, 91(12): 121408.
DOI URL |
| [63] |
WEBER C, WERNER P. A local compactness theorem for Maxwell’s equations[J]. Mathematical Methods in the Applied Sciences, 1980, 2(1): 12-25.
DOI URL |
| [64] | DOBSON P J. Physical properties of crystals-their representation by tensors and matrices[J]. Physics Bulletin, 1985, 36(12): 506-506. |
| [65] |
WU J Y, XIE Z T, FU H Y, et al. Numerical investigations on the cascaded high harmonic and quasi-supercontinuum generations in epsilon-near-zero aluminum-doped zinc oxide nanolayers[J]. Results in Physics, 2021, 24: 104086.
DOI URL |
| [66] |
CHOU CHAU Y F. Nanophotonic materials and devices: recent advances and emerging applications[J]. Micromachines, 2025, 16(8): 933-977.
DOI URL |
| [67] | WANG Z, SREEKANTH K V, ZHAO M, et al. Two-dimensional materials for tunable and nonlinear metaoptics[J]. Advanced Photonics, 2024, 6(3): 034001. |
| [68] | KONISHI K, AKAI D, MITA Y, et al. Tunable third harmonic generation in the vacuum ultraviolet region using dielectric nanomembranes[J]. APL Photonics, 2020, 5(6): 066103. |
| [69] | HÄHNEL D, GOLLA C, ALBERT M, et al. A multi-mode super-Fano mechanism for enhanced third harmonic generation in silicon metasurfaces[J]. Light, Science & Applications, 2023, 12(1): 97-104. |
| [70] |
LIU A Y, HSIEH J C, LIN K I, et al. Third harmonic generation enhanced by generalized kerker condition in all-dielectric metasurfaces[J]. Advanced Optical Materials, 2023, 11(19): 2300526.
DOI URL |
| [71] |
DENG Y H, SHI Z H, ZHENG Y Q, et al. Highly efficient ultraviolet third-harmonic generation in an isolated thin Si meta-structure[J]. Advanced Science, 2024, 11(34): 2404094.
DOI URL |
| [72] |
WANG Z Y, ZHAO Q M, TANG W J, et al. Giant enhancement of third harmonic generation via guided mode resonances in notched silicon waveguides[J]. Applied Physics Letters, 2024, 124(10): 101101.
DOI URL |
| [73] |
LIU T T, QIN M B, QIU J M, et al. Polarization-independent enhancement of third-harmonic generation empowered by doubly degenerate quasi-bound states in the continuum[J]. Nano Letters, 2025, 25(9): 3646-3652.
DOI URL |
| [74] |
WANG L, KRUK S, KOSHELEV K, et al. Nonlinear wavefront control with all-dielectric metasurfaces[J]. Nano Letters, 2018, 18(6): 3978-3984.
DOI PMID |
| [75] |
SCHLICKRIEDE C, KRUK S S, WANG L, et al. Nonlinear imaging with all-dielectric metasurfaces[J]. Nano Letters, 2020, 20(6): 4370-4376.
DOI PMID |
| [76] |
MIYATA K, PETROV V, NOACK F. High-efficiency single-crystal third-harmonic generation in BiB3O6 [J]. Optics Letters, 2011, 36(18): 3627-3629.
DOI URL |
| [77] |
BONACINA L, BREVET P F, FINAZZI M, et al. Harmonic generation at the nanoscale[J]. Journal of Applied Physics, 2020, 127(23): 230901.
DOI URL |
| [78] |
ABULIKEMU A, HASE M. Highly-efficient third-harmonic generation from ultrapure diamond crystals[J]. Optical Materials Express, 2023, 13(4): 916-924.
DOI URL |
| [79] |
GRAVIER F, BOULANGER B. Cubic parametric frequency generation in rutile single crystal[J]. Optics Express, 2006, 14(24): 11715-11720.
PMID |
| [80] |
LIU Z J, XU Y, LIN Y, et al. High-Q quasibound states in the continuum for nonlinear metasurfaces[J]. Physical Review Letters, 2019, 123(25): 253901.
DOI URL |
| [81] |
TIROLE R, TILMANN B, DE S MENEZES L, et al. Nonlinear dielectric epsilon near-zero hybrid nanogap antennas[J]. Advanced Optical Materials, 2024, 12(9): 2302069.
DOI URL |
| [82] |
BENCHEIKH K, GRAVIER F, DOUADY J, et al. Triple photons: a challenge in nonlinear and quantum optics[J]. Comptes Rendus Physique, 2007, 8(2): 206-220.
DOI URL |
| [83] |
BENCHEIKH K, CENNI M F B, OUDOT E, et al. Demonstrating quantum properties of triple photons generated by χ(3) processes[J]. The European Physical Journal D, 2022, 76(10): 186-206.
DOI |
| [84] |
DOUADY J, BOULANGER B. Experimental demonstration of a pure third-order optical parametric downconversion process[J]. Optics Letters, 2004, 29(23): 2794-2796.
PMID |
| [85] | BERTRAND J, BOUTOU V, FELIX C, et al. Experimental demonstration and modeling of near-infrared nonlinear third-order triple-photon generation stimulated over one mode[J]. APL Quantum, 2025, 2(2): 026114. |
| [86] |
TANG W J, ZHAO Q M, WANG Z Y, et al. Realizing high-efficiency third harmonic generation via accidental bound states in the continuum[J]. Optics Letters, 2024, 49(5): 1169-1172.
DOI URL |
| [87] |
XU X Y, WANG T X, CHEN P C, et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains[J]. Nature, 2022, 609(7927): 496-501.
DOI |
| [88] |
WEI D Z, WANG C W, WANG H J, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nature Photonics, 2018, 12(10): 596-600.
DOI |
| [89] |
XU T X, SWITKOWSKI K, CHEN X, et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate[J]. Nature Photonics, 2018, 12(10): 591-595.
DOI |
| [90] |
PETIT Y, PEÑA A, SEGONDS P, et al. Development and experimental demonstration of negative first-order quasi-phase matching in a periodically poled Rb-doped KTiOPO4 crystal[J]. Optics Letters, 2020, 45(21): 6026-6029.
DOI URL |
| [91] |
ZHANG Z M, SHAO M C, LIANG F, et al. Cascaded second harmonic generation for deep-UV radiations with a 2D nonlinear photonic quartz crystal[J]. Laser & Photonics Reviews, 2024, 18(4): 2300664.
DOI URL |
| [92] | SHAO M C, LIANG F, YU H H, et al. Pushing periodic-disorder-induced phase matching into the deep-ultraviolet spectral region: theory and demonstration[J]. Light: Science & Applications, 2020, 9(1): 45-52. |
| [93] | SHAO M C, LIANG F, YU H H, et al. Angular engineering strategy of an additional periodic phase for widely tunable phase-matched deep-ultraviolet second harmonic generation[J]. Light: Science & Applications, 2022, 11(1): 31-38. |
| [94] |
SHAO M C, LIANG F, ZHANG Z M, et al. Spatial frequency manipulation of a quartz crystal for phase-matched second-harmonic vacuum ultraviolet generation[J]. Laser & Photonics Reviews, 2023, 17(10): 2300244.
DOI URL |
| [1] | 魏玲莉, 倪友保, 黄昌保, 吴海信, 王振友, 胡倩倩, 余学舟, 刘国晋, 周强. 大尺寸ZnTe晶体的生长与性能[J]. 人工晶体学报, 2023, 52(7): 1317-1324. |
| [2] | 郑万国, 齐红基. 人类首次实现聚变“点火”,激光聚变取得历史性突破[J]. 人工晶体学报, 2023, 52(1): 1-7. |
| [3] | 陈海伟, 胡小鹏, 祝世宁. 光学超晶格:从体块到薄膜[J]. 人工晶体学报, 2022, 51(9-10): 1527-1534. |
| [4] | 唐光鑫, 刘旺, 王丽荣, 李云飞, 张玲, 张国春. 非线性光学晶体Na3La9O3(BO3)8的高功率纳秒激光三倍频特性研究[J]. 人工晶体学报, 2022, 51(3): 398-403. |
| [5] | 李鹏飞, 胡子钰, 郑国宗. Ⅰ类高氘DKDP晶片性能研究[J]. 人工晶体学报, 2022, 51(12): 2009-2013. |
| [6] | 陈家颖, 张新彬, 陈怀熹, 冯新凯, 程星, 马磊, 梁万国. 一种通过梯形PPMgLN波导倍频实现带宽可调谐光源的理论研究[J]. 人工晶体学报, 2022, 51(11): 1830-1835. |
| [7] | 孙杰, 陈怀熹, 张新彬, 冯新凯, 李广伟, 粱万国. 基于级联PPMgLN晶体的双倍/三倍频双波长激光器[J]. 人工晶体学报, 2021, 50(7): 1386-1390. |
| [8] | 王健;程红娟;高彦昭. 长波红外用准相位匹配材料研究进展[J]. 人工晶体学报, 2020, 49(8): 1397-1404. |
| [9] | 徐梦秋;杨珊珊;史倩艺;李应发;廖杨芳. 拓扑半金属α2-Ti3Al(0001)表面的电子结构理论研究[J]. 人工晶体学报, 2020, 49(8): 1562-1567. |
| [10] | 倪友保;韩卫民;吴海信;毛明生;黄昌保;王振友;姜鹏飞. 大尺寸长波红外非线性晶体CdSe生长及应用[J]. 人工晶体学报, 2020, 49(8): 1488-1489. |
| [11] | 王振友;吴海信. 8~12μm长波红外非线性晶体研究进展[J]. 人工晶体学报, 2019, 48(1): 34-46. |
| [12] | 牛晓颖;王文杰;周春花. 短程有序双周期非线性光子晶体中宽带级联三次谐波产生的研究[J]. 人工晶体学报, 2015, 44(5): 1389-1393. |
| [13] | 王文杰;牛晓颖;周春花. 短程有序结构中宽带二次谐波产生的研究[J]. 人工晶体学报, 2014, 43(5): 1252-1256. |
| [14] | 杨登辉;赵北君;朱世富;陈宝军;何知宇;曹礼强;陈成. 磷锗锌晶体器件定向加工研究[J]. 人工晶体学报, 2013, 42(12): 2477-2481. |
| [15] | 曾体贤;赵北君;朱世富;何知宇;陈宝军;卢大洲. CdSe晶体倍频光学参数及元件加工研究[J]. 人工晶体学报, 2009, 38(5): 1068-1072. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS