[1] Hamidreza S. Optimisation of cooled InSb detectors[J].Ⅲ-Ⅴs Review,2004,17(7):27-31. [2] 柏 伟,庞新义.4英寸高质量InSb晶体生长研究[J].红外,2018,39(9): 8-13. [3] 付安英,马 睿,薛三旺.高灵敏度室温锑化铟红外探测器研制[J].现代电子技术,2007,30(2):182-183. [4] 林达荃.锑化铟的物理特性及其应用[J].物理,1963,2:72-81. [5] Gatos H C, Moody P L, Lavine M C. Growth of InSb crystals in the <111> polar direction[J]. Journal of Appliede Physics, 1960, 31: 212-213. [6] Mueller R K, Jacobson R L. Growth twins in indium antimonide[J]. Journal of Appliede Physics, 1961, 32: 550-551. [7] Witt A F, Gatos H C, Lichtensteiger M, et al. Crystal growth and steady-state segregation under zero gravity: InSb[J]. Journal of The Electrochemical Society, 1975, 122(2): 276-283. [8] Benz K W, Muller G. GaSb And InSb Crystals grown by vertical and horizontal travelling heater method[J]. Journal of Crystal Growth, 1979, 46: 35-42. [9] Chaudhuri K D, Anita L, Poonarn S, et al. Electron transport in heavily doped and compensated n-type InSb in the temperature range 4.2~300 K[J]. Physical Review B, 1980, 22: 6319-6324. [10] Yasuhiro H, Yasushi S, Kenji T, et al. Effect of ultrasonic vibrations on InSb pulled crystals[J]. Japanese Journal of Applied Physics, 1982, 21(9): 1273-1277. [11] Derebail R, Wilcox W R, Regel L L. Influence of gravity on the directional solidification of indium antimonide[J]. Journal of Spacecraft and Rockets, 1993, 30(2): 202-207. [12] Aleksandar G. Convection and segregation during growth of Ge and InSb crystals by the submerged heater method[J]. Journal of Crystal Growth, 1993, 128: 201-206. [13] Zhou J, Larrousse M, Wilcox W R, et al. Directional solidification with ACRT[J]. Journal of Crystal Growth, 1993, 128: 173-177. [14] Campbell T A, Koster J N. Radioscopic visualization of indium antimonide growth by the vertical Bridgman-Stockbarger technique[J]. Journal of Crystal Growth, 1995, 147: 408-410. [15] Kozhemyakin G N. Influence of ultrasonic vibrations on the growth of InSb crystals[J]. Journal of Crystal Growth, 1995, 149: 266-268. [16] Lin M H, Kou S. Segragation control in Czochralski pulling of InSb single crystals[J]. Journal of Crystal Growth, 1995, 152: 256-260. [17] Mohan P, Senguttuvan N, Babu S M, et al. Growth of inclusion-free InSb crystals by vertical Bridgman method[J]. Journal of Crystal Growth, 2000, 211: 207-210. [18] Zemskov V S, Raukhman M R, Shalimov V P, et al. The influence of arrangement of growth setups onboard a spacecraft on microgravity conditions of experiments: an example of floating zone melting of InSb∶Te onboard the Foton-3 satellite[J]. Cosmic Research, 2004, 42(2):144-154. [19] Wang J B, Regel L L, Wilcox W R. Detached solidification of InSb on earth[J]. Journal of Crystal Growth, 2004, 260: 590-599. [20] 赵建忠.InSb焦平面探测器的发展现状与趋势[J].红外技术,2016,38(11):905-913. [21] Flint P. CMP process comparison for 150 mm larger area InSb (111) B focal plane array substrates[C]. SPIE, 2009, 7487: 74870C(1-12). [22] Grant L R. Progress in III-V materials technology[C]. SPIE, 2004, 5621: 58-65. [23] Furlong M J, Martinez R, Amirhaghi S, et al. Scaling up wafer production: innovation and challenges for epitaxy ready GaSb and InSb substrates[C]. SPIE, 2011, 8012: 801211: 1-10. [24] Micklethwaite W F. Advances in infrared antimonide technology[C]. SPIE, 1993, 2554: 167-174. [25] Martinez R, Amirhaghi S, Smith B, et al. Towards the production of very low defect GaSb and InSb substrates: bulk crystal growth, defect analysis and scaling challenges[C]. SPIE, 2013, 8631: 86311N. [26] Furlong M J, Dallas G, Meshew G, et al. Growth and characterization of 6" InSb substrates for use in large-area infrared-imaging applications[J]. Infrared Technology and Applications, 2014, 6: 907016. [27] Nathan W G, Victor P R, Joseph G B, et al. Interface and facet control during Czochralski growth of (111) InSb crystals for cost reduction and yield improvement of IR focal plane array substrates[J]. Infrared Sensors Devices and Applications, 2014, 10: 922003. [28] Jason L M, Nathan W G, Joseph G B, et al. Enabling on-axis InSb crystal growth for high-volume wafer production: characterizing and eliminating variation in electrical performance for IR focal plane array applications[J]. Infrared Technology and Applications, 2016, 5: 981915. [29] 雷胜琼.昆明物理所锑化铟红外材料、器件研究进展[J].红外与激光工程,2007,36(s1):15-16. [30] 田敬民.锑化铟磁敏电阻的研究[J].传感器技术,1994,4:11-17. [31] 程姝丹.霍尔效应的应用与发展[J].电气自动化,2007,4:78-82. [32] 张 雪,梁晓庚.红外探测器发展需求[J].电光与控制,2013,20(2):41-44. [33] 王利平,孙韶媛,王庆宝,等.红外焦平面探测器的读出电路[J].光学技术,2000,26(2):122-125. [34] Lucy Z, Meimei T, Leslie A. Developing high-performance III-V superlattice IRFPAs for defense-challenges and solutions[C]. SPIE, 2010, 7660: 76601E. [35] 方家熊.红外探测器技术的进展[M].天津:天津科学技术出版社,2003. [36] 何 力.先进焦平面技术导论[M].北京:国防工业出版社,2011. [37] Fowler A M, Gatley I, McIntyre P. ALADDIN: the 1024×1024 InSb array-design description and results[C]. SPIE, 1996, 2816: 150-160. [38] Mark A G, Larry J H, Robert B J. Flexible 640×512 InSb FPA architecture[C]. SPIE, 1997, 3061: 140-149. [39] Beuville E, Longshore R E, Sood A K, et al. High performance large infrared and visible astronomy arrays for low background applications: instruments performance data and future developments at Raytheon[C]. SPIE, 2007, 6660: 66600B. [40] Hoffman A W, Corrale E, Love P J. 2K×2K InSb for astronomy[C]. SPIE, 2004, 5499: 59-67. [41] Hoffman A W, Love P J, Ando K J. Large infrared and visible arrays for low background applications: an overview of current developments at Raytheon[C]. SPIE, 2004, 5499: 240-249. [42] 钟 轶.空间遥感用InGaAs探测器低噪声电路系统设计[J].激光与红外,2009,39(5): 514-517. [43] Gert F, James W B. Review of the state of infrared detectors for astronomy in retrospect of June 2002 workshop on scientific detectors for astronomy[C]. SPIE, 2003, 4841: 839-852. [44] Grelner M. State of the art in large format IR FPA development at CMC electronics Cincinnati[C]. SPIE, 2003, 5074: 60-71 [45] Davis M, Devitt J, Greiner M. Advanced FPA technology development at CMC Electronics[C]. SPIE, 2004, 5406: 62-73. [46] Rawe R, Timlin A, Davis M. Advanced large format InSb IR FPA maturation at CMC Electronics[C]. SPIE, 2004, 5563:152-162. [47] Nesher O, Klipstein P C. High performance IR detectors at SCD present and future[C]. SPIE, 2005, 5957:59-68. [48] Gershon G, Albo A, Eylon M. 3 mega-pixel InSb detector with 10 μm pitch[C]. SPIE, 2013, 8704: 870438. [49] Gershon G, Albo A, Eylon M. Large format InSb infrared detector with 10 μm pixels. 2014, http://www.scd.co.il. [50] Mcmurtry C W, Forrest W J, Moore A C, et al. James webb space telescope: characterization of flight candidate NIR InSb arrays[C]. SPIE, 2004, 5167: 144-158. [51] 袁 俊.浅析巡航导弹防御及武器系统发展[J].制导与引信,2008,29(3):12-21. [52] 赵 超.红外制导的发展趋势及其关键技术[J].电光与控制,2008,15(5):48-53. [53] 王晓飞,张 海.红外焦平面阵列成像制导技术的发展[J].战术导弹技术,2010,6(4):120-123. [54] 刘 颖,陈 勇.国外精确制导武器的导引头技术发展[J].飞航导弹,2011,8:70-73. [55] 明宝印.自动目标识别在空地制导武器上的应用特点及发展趋势[J].飞航导弹,2008,2:30-34. [56] 牟宏山. InSb红外焦平面探测器现状与进展[J].激光与红外,2016,46(4):394-399. [57] 刘默伟,王志刚.红外红外成像制导武器的装备概况与发展分析[J].舰船电子工程,2009,29(6):36-58. [58] 张东辉,孙彦锋,王佳轶,等.舰载红外搜索与跟踪系统的发展[J].舰船电子工程,2008,28(3):29-31. [59] 彭焕亮.红外焦平面热成像技术的发展[J].激光与红外,2006,36(s1):776-780. [60] Norton P. Detector focal plane array technology[M]. Fort Belvoir; U.S. army night vision and electronic sensor directorate, 2003. [61] 柏 伟.锑化铟红外焦平面探测器发展现状[J].红外,2019,40(8):1-14. [62] 陈西宏.弹上导引头信息对抗技术概述[J].飞航导弹,2012,1:71-75. |