[1] Sahu A, Garg A, Dixit A. A review on quantum dot sensitized solar cells: past, present and future towards carrier multiplication with a possibility for higher efficiency[J]. Solar Energy, 2020, 203: 210-239. [2] Ganga H, Dibyendu G, Md Y A, et al. Interface engineering in quantum-dot-sensitized solar cells[J]. Langmuir, 2018, 34(35): 10197-10216 [3] Vasko Jovanovski, Victoria Gonzalez-Pedro, Sixto Gimenez, et al. A sulfide/polysulfide-based ionic liquid electrolyte for quantum dot-sensitized solar cells[J]. J Am Chem Soc, 2011, 133(50): 20156-20159. [4] Karmakar Keshab, Sarkar Ayan, Mandal Kalyan, et al. Investigating the role of oxygen vacancies and lattice strain defects on the enhanced photoelectrochemical property of alkali metal (Li, Na, and K) doped ZnO nanorod photoanodes[J]. Chem Electro Chem, 2018, 5(8): 1147-1152 [5] Raja M, Muthukumarasamy N, Velauthapillai Dhayalan, et al. Quantum dot sensitized aluminium doped and copper doped ZnO nanostructure based solar cells[J]. J Mater Sci: Mater Electron, 2014, 25: 5035-5040. [6] Agarwal M B, Malaidurai M, Sharma A, et al. Effect of Al doping on hydrothermal growth and physical properties of doped ZnO nanoarrays for optoelectronic applications[J]. Materials Today: Proceedings, 2020, 21: 1781-1786. [7] Khaywimut C, Bhoomanee C, Choopun S, et al. Effects of Ga doping concentration on morphological and optical properties of hydrothermally grown ZnO Nanorods[J]. Materials Today: Proceedings, 2019, 17: 1231-1239. [8] Xu J, Chen Z H, Zapien J A, et al. Surface engineering of ZnO nanostructures for semiconductor-sensitized Solar Cells[J]. Adv Mater, 2014, 26(31): 5337-5367. [9] Tian J J, Uchaker E, Zhang Q F, et al. Hierarchically structured zno nanorods-nanosheets for improved quantum-dot-sensitized solar cells[J]. ACS Appl. Mater. Interfaces, 2014, 6(6): 4466-4472. [10] Park Hyunggil, Kim Y Y, Ji Iksoo, et al. Synthesis and optical characteristics of yttrium-doped zinc oxide nanorod arrays grown by hydrothermal method[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(11): 8331-8336. [11] Kim S K, Gopi Chandu V V M, Srinivasa Rao S, et al. Highly efficient yttrium-doped ZnO nanorods for quantum dot-sensitized solar cells[J]. Applied Surface Science,2016, 365: 136-142. [12] Commandeur Daniel, Brown Grant, Mcnulty Peter, et al. Yttrium-doped ZnO nanorod arrays for increased charge mobility and carrier density for enhanced solar water splitting[J]. The Journal of Physical Chemistry C, 2019, 123(30): 18187-18197. [13] Jara Danilo H, Yoon Seog Joon, Stamplecoskie Kevin G, et al. Size-dependent photovoltaic performance of CuInS2 quantum dot-sensitized solar cells[J]. Chemistry of Materials, 2014, 26(24): 7221-7228. [14] Ilaiyaraja P, Rakesh B, Das T K, et al. CuInS2 quantum dot sensitized solar cells with high VOC≈0.9 V achieved using microsphere-nanoparticulate TiO2 composite photoanode[J]. Solar Energy Materials and Solar Cells, 2018, 178: 208-222. [15] 夏冬林,郭锦华,秦 可.钇掺杂多孔结构氧化锌纳米棒制备与性能研究[J].人工晶体学报,2020,49(2): 264-269+275. [16] 彭卓寅. CuInS2/TiO2基量子点敏化太阳能电池的制备及性能研究[D].武汉:武汉理工大学,2014. [17] Shi Y, Jin Z G, Li C Y, et al. Effect of [Cu]/[In] ratio on properties of CuInS2 thin films prepared by successive ionic layer absorption and reaction method[J]. Applied Surface Science,2006, 252(10):3737-3743. [18] Pathan H M, Lokhande C D. Chemical deposition and characterization of copper indium disulphide thin films[J]. Applied Surface Science, 2004, 239(1): 11-18. [19] Coulter J B, Birnie III D P. Assessing Tauc plot slope quantification: ZnO thin films as a model system[J]. Physica Status Solidi (b), 2018, 255(3): 1700393. [20] Kongkanand A, Tvrdy K, Takechi K, et al. Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture[J]. Journal of the American Chemical Society, 2008, 130(12): 4007-4015. |