[1] Tsai M L, Su S H, Chang J K, et al. Monolayer MoS2 heterojunction solar cells[J]. ACS Nano, 2014, 8(8): 8317-8322. [2] Choi M, Park Y J, Sharma B K, et al. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor[J]. Science Advances, 2018, 4(4): eaas8721. [3] Shim Y S, Kwon K C, Suh J M, et al. Synthesis of numerous edge sites in MoS2 via SiO2 nanorods platform for highly sensitive gas sensor[J]. ACS Appl Mater Interfaces, 2018, 10: 31594-31602. [4] Dhyani V, Das S. High-speed scalable silicon-MoS2 P-N heterojunction photodetectors[J]. Sentific Reports, 2017, 7: 44243. [5] Lopez-SAnchez O, Alarcon-Llado E, Koman V, et al. Light generation and harvesting in a Van der Waals heterostructure[J].ACS Nano, 2014, 8(3): 3042-3048. [6] 孔鑫燚,宋雪梅,张林睿,等.石墨烯-硅肖特基结太阳电池的仿真研究[J].太阳能学报,2020,41(7):190-195. [7] Tiwari P, Patel K, Krishnia L, et al. Potential application of multilayer n-type tungsten diselenide (WSe2) sheet as transparent conducting electrode in silicon heterojunction solar cell[J]. Computational Materials Science, 2017, 136: 102-108. [8] Huang R M, Yu M, Yang Q R, et al. Numerical simulation for optimization of an ultra-thin n-type WS2/p-type c-Si heterojunction solar cells[J]. Computational Materials Science, 2020, 178: 109600. [9] 李圣浩, 但 易,沈 辉.二硫化钼-硅异质结太阳电池的原位制备及器件模拟[J].科技导报,2016,34(2):39-42. [10] 罗 伟, 姜 鑫,梁世豪.基于AFORS-HET的单层MoS2(n)/a-Si(i)/c-Si(p)/μc-Si(p+)异质结太阳能电池模拟[J].人工晶体学报, 2020,49(3):422-427. [11] Mak K F, Lee C, Hone J, et al. Atomically thin MoS2∶A new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105: 136805. [12] Santos E J G, Kaxiras E. Electrically-driven tuning of the dielectric constant in MoS2 layers[J]. Acs Nano, 2013, 7:10741-10746. [13] Radisavljevic B, Kis A. Mobility engineering and a metal-insulator transition in monolayer MoS2[J]. Nature Materials, 2013, 12(9): 815-820. [14] Lu C P, Li G, Mao J, et al. Bandgap, mid-gap states, and gating effects in MoS2[J]. Nano Letters, 2014, 14(8): 4628-4633. [15] Howell S L, Jariwala D, Wu C C, et al. Investigation of band-offsets at monolayer-multilayer MoS2 junctions by scanning photocurrent microscopy[J]. Nano Letters, 2015, 15(4): 2278-2284. [16] Zhang H, Ma Y, Wan Y, et al. Measuring the refractive index of highly crystalline monolayer MoS2 with high confidence[J]. Sci Rep, 2015, 5: 8440. [17] Kim J H, Lee J, Kim J H, et al. Work function variation of MoS2 atomic layers grown with chemical vapor deposition: the effects of thickness and the adsorption of water/oxygen molecules[J]. Applied Physics Letters, 2015, 106(25): 699. [18] Huang R, Yu M, Yang Q, et al. Numerical simulation for optimization of an ultra-thin n-type WS2/p-type c-Si heterojunction solar cells[J]. Computational Materials Science, 2020, 18: 109600. [19] Rand B P, Genoe J, Heremans P, et.al. Solar cells utilizing small molecular weight organic semiconductors[J]. Prog Photovoltaics: Res Appl, 2007, 15: 659-676. [20] Thakur U K, Kisslinger R, Shankar K. One-dimensional electron transport layers for perovskite solar cells[J]. Nanomaterials, 2017, 7(95): 1-27. [21] Jensen N, Hausner R M, Bergmann R B, et. al. Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells[J]. Prog Photovolt: Res Appl, 2002, 10: 1-13. |