[1] Zhang H Z, Kong Y C, Wang Y Z, et al. Ga2O3 nanowires prepared by physical evaporation[J]. Solid State Communications, 1999, 109(11): 677-682. [2] 曹轶森.一维氧化镓纳米线的制备与应用研究[D].北京:北京工业大学,2017. [3] 汪 舟.Ⅲ-Ⅴ族纳米线的制备及其在太阳能电池中的应用[D].北京:北京化工大学,2018. [4] Zhang X Y, Huang H J, Zhang Y G, et al. Phase transition of two-dimensional β-Ga2O3 nanosheets from ultrathin γ-Ga2O3 nanosheets and their photocatalytic hydrogen evolution activities[J]. ACS Omega, 2018, 3(10): 14469-14476. [5] Muruganandham M, Amutha R, Wahed M S M A, et al. Controlled fabrication of α-GaOOH and α-Ga2O3 self-assembly and its superior photocatalytic activity[J]. The Journal of Physical Chemistry C, 2012, 116(1): 44-53. [6] Shin G, Kim H Y, Kim J. Deep-ultraviolet photodetector based on exfoliated n-type β-Ga2O3 nanobelt/p-Si substrate heterojunction[J]. Korean Journal of Chemical Engineering, 2018, 35(2): 574-578. [7] Wang S L, Sun H L, Wang Z, et al. In situ synthesis of monoclinic β-Ga2O3 nanowires on flexible substrate and solar-blind photodetector[J]. Journal of Alloys and Compounds, 2019, 787: 133-139. [8] Yang M Z, Sun C L, Wang T L, et al. Graphene-oxide-assisted synthesis of Ga2O3 nanosheets/reduced graphene oxide nanocomposites anodes for advanced alkali-ion batteries[J]. ACS Applied Energy Materials, 2018, 1(9): 4708-4715. [9] Huang C C, Yeh C S. GaOOH, and β- and γ-Ga2O3nanowires: preparation and photoluminescence[J]. New J Chem, 2010, 34(1): 103-107. [10] Roy R, Hill V G, Osborn E F. Polymorphism of Ga2O3 and the system Ga2O3-H2O[J]. Journal of the American Chemical Society, 1952, 74(3): 719-722. [11] Playford H Y, Hannon A C, Barney E R, et al. Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction[J]. Chemistry - A European Journal, 2013, 19(8): 2803-2813. [12] Reddy L S, Ko Y H, Yu J S. Hydrothermal synthesis and photocatalytic property of β-Ga2O3 nanorods[J]. Nanoscale Res Lett, 2015, 10(1): 364. [13] Guo D Y, Wu Z P, Li P G, et al. Magnetic anisotropy and deep ultraviolet photoresponse characteristics in Ga2O3∶Cr vermicular nanowire thin film nanostructure[J]. RSC Advances, 2015, 5(17): 12894-12898. [14] Sharma S, Sunkara M K. Direct synthesis of gallium oxide tubes, nanowires, and nanopaintbrushes[J]. Journal of the American Chemical Society, 2002, 124(41): 12288-12293. [15] Cao C B, Chen Z, An X Q, et al. Growth and field emission properties of cactus-like gallium oxide nanostructures[J]. The Journal of Physical Chemistry C, 2008, 112(1): 95-98. [16] Shi F, Wei X. Synthesis and characterization of beta-Ga2O3 nanorod array clumps by chemical vapor deposition[J]. Journal of Nanoscience and Nanotechnology, 2012, 12(11): 8481-8486. [17] Kim H W, Kim N H. Formation of amorphous and crystalline gallium oxide nanowires by metalorganic chemical vapor deposition[J]. Applied Surface Science, 2004, 233(1/2/3/4): 294-298. [18] Oh S, Kim J, Ren F, et al. Quasi-two-dimensional β-gallium oxide solar-blind photodetectors with ultrahigh responsivity[J]. Journal of Materials Chemistry C, 2016, 4(39): 9245-9250. [19] Rodrigues A V, Sabino N L. Synthesis of photoluminescent β-Ga2O3 nanostructures using electrospinning method, and control of length-diameter ratio by calcination heating rates[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(18): 16910-16916. [20] Bayam Y, Logeeswaran V J, Katzenmeyer A M, et al. Synthesis of Ga2O3 nanorods with ultra-sharp tips for high-performance field emission devices[J]. Science of Advanced Materials, 2015, 7(2): 211-218. [21] Hsieh C H, Chou L J, Lin G R, et al. Nanophotonic switch: gold-in-Ga2O3 peapod nanowires[J]. Nano Letters, 2008, 8(10): 3081-3085. [22] Jiang H F, Chen Y Q, Zhou Q T, et al. Temperature dependence of Ga2O3 micro/nanostructures via vapor phase growth[J]. Materials Chemistry and Physics, 2007, 103(1): 14-18. [23] Chang P C, Fan Z Y, TSENG W Y, et al. Β-Ga2O3 nanowires: synthesis, characterization, and p-channel field-effect transistor[J]. Applied Physics Letters, 2005, 87(22): 222102. [24] Chun H J, Bae S Y, Park J. Controlled structure of gallium oxide and indium oxide nanowires[J]. MRS Proceedings, 2003, 789: N11.27. [25] 王汐璆,庄文昌,张凯惠,等.化学气相沉积法制备氧化镓纳米线[J].人工晶体学报,2019,48(12):2174-2178+2185. [26] Reddy L S, Ko Y H, Yu J S. Hydrothermal synthesis and photocatalytic property of β-Ga2O3 nanorods[J]. Nanoscale Res Lett, 2015, 10(1): 364. [27] Zhao Y Y, Frost R L, Yang J, et al. Size and morphology control of gallium oxide hydroxide GaO(OH), nano- to micro-sized particles by soft-chemistry route without surfactant[J]. The Journal of Physical Chemistry C, 2008, 112(10): 3568-3579. [28] Zhang J H, Jiao S J, Wang D B, et al. Solar-blind ultraviolet photodetection of an α-Ga2O3 nanorod array based on photoelectrochemical self-powered detectors with a simple, newly-designed structure[J]. Journal of Materials Chemistry C, 2019, 7(23): 6867-6871. [29] Kang B K, Lim H D, Mang S R, et al. Synthesis and characterization of monodispersed β-Ga2O3 nanospheres via morphology controlled Ga4(OH)10SO4 precursors[J]. Langmuir, 2015, 31(2): 833-838. [30] Kang J, Shin D, Bae S, et al. Graphene transfer: key for applications[J]. Nanoscale, 2012, 4(18): 5527-5537. [31] Koenig S P, Doganov R A, Seixas L, et al. Electron doping of ultrathin black phosphorus with Cu adatoms[J]. Nano Letters, 2016, 16(4): 2145-2151. [32] Salvatore G A, Münzenrieder N, Barraud C, et al. Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate[J]. ACS Nano, 2013, 7(10): 8809-8815. [33] Shin G, Kim H Y, Kim J. Deep-ultraviolet photodetector based on exfoliated n-type β-Ga2O3 nanobelt/p-Si substrate heterojunction[J]. Korean Journal of Chemical Engineering, 2018, 35(2): 574-578. [34] Manasevit H M. Single-crystal gallium arsenide on insulating substrates[J]. Applied Physics Letters, 1968, 12(4): 156-159. [35] Furneaux R C, Rigby W R, Davidson A P. The formation of controlled-porosity membranes from anodically oxidized aluminium[J]. Nature, 1989, 337(6203): 147-149. [36] Cheng B, Samulski E T. Fabrication and characterization of nanotubular semiconductor oxides In2O3 and Ga2O3[J]. Journal of Materials Chemistry, 2001, 11(12): 2901-2902. [37] Kang B K, Mang S R, Lim H D, et al. Synthesis, morphology and optical properties of pure and Eu3+ doped β-Ga2O3 hollow nanostructures by hydrothermal method[J]. Materials Chemistry and Physics, 2014, 147(1/2): 178-183. [38] He H Y, Orlando R, Blanco M A, et al. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases[J]. Physical Review B, 2006, 74(19): 195123. [39] Pasquevich, Uhrmacher, Ziegeler, et al. Hyperfine interactions of 111Cd in Ga2O3[J]. Physical Review. B, Condensed Matter, 1993, 48(14): 10052-10062. [40] Ueda N, Hosono H, Waseda R, et al. Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals[J]. Applied Physics Letters, 1997, 70(26): 3561-3563. [41] An Y H, Chu X L, Huang Y Q, et al. Au plasmon enhanced high performance β-Ga2O3 solar-blind photo-detector[J]. Progress in Natural Science: Materials International, 2016, 26(1): 65-68. [42] Dong L, Jia R, Xin B, et al. Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3[J]. Sci Rep, 2017, 7: 40160. [43] 郭道友,李培刚,陈政委,等.超宽禁带半导体β-Ga2O3及深紫外透明电极、日盲探测器的研究进展[J].物理学报,2019,68(7):7-42. [44] Koide Y, Liao M Y, Alvarez J. Thermally stable solar-blind diamond UV photodetector[J]. Diamond and Related Materials, 2006, 15(11/12): 1962-1966. [45] 崔书娟.氧化镓基光电探测器的研制与研究[D].北京:中国科学院大学,2018. [46] Feng P, Zhang J Y, Li Q H, et al. Individual β-Ga2O3 nanowires as solar-blind photodetectors[J]. Applied Physics Letters, 2006, 88(15): 153107. [47] Tian W, Zhi C Y, Zhai T Y, et al. In-doped Ga2O3 nanobelt based photodetector with high sensitivity and wide-range photoresponse[J]. Journal of Materials Chemistry, 2012, 22(34): 17984. [48] 冯喜宁,赵建伟,秦丽溶,等.基于氧化镓纳米线的日盲紫外探测器件的制备与性能[J].西南大学学报(自然科学版),2014,36(3):167-171. [49] Chen X, Liu K W, Zhang Z Z, et al. Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction[J]. ACS Applied Materials & Interfaces, 2016, 8(6): 4185-4191. [50] You D T, Xu C X, Zhao J, et al. Vertically aligned ZnO/Ga2O3 core/shell nanowire arrays as self-driven superior sensitivity solar-blind photodetectors[J]. Journal of Materials Chemistry C, 2019, 7(10): 3056-3063. |