人工晶体学报 ›› 2021, Vol. 50 ›› Issue (10): 1813-1829.
武蕊1, 范东海1, 康阳1, 万鑫1, 郭晨1, 魏登科1, 陈冬雷2, 王涛1,3, 查钢强1,3
收稿日期:
2021-08-13
出版日期:
2021-10-15
发布日期:
2021-11-24
通讯作者:
查钢强,博士,教授。E-mail:zha_gq@nwpu.edu.cn
作者简介:
武 蕊(1996—),女,山西省人,博士研究生。E-mail:wurui@mail.nwpu.edu.cn。查钢强(1980—),男,博士,西北工业大学材料学院教授、博士生导师、教育部新世纪优秀人才、国家万人计划青年拔尖人才。主要研究方向为新型碲锌镉高能射线探测器的研制及应用开发,在低成本碲锌镉材料制备、晶体加工处理与质量评价、缺陷调控与性能表征、器件设计与制备等方面开展了一系列的研究。主持国家自然科学基金、工信部民机科研项目、装发军用电子元器件项目等10余项科研项目,发表学术论文100余篇,申请国家发明专利20余项。
基金资助:
WU Rui1, FAN Donghai1, KANG Yang1, WAN Xin1, GUO Chen1, WEI Dengke1, CHEN Donglei2, WANG Tao1,3, ZHA Gangqiang1,3
Received:
2021-08-13
Online:
2021-10-15
Published:
2021-11-24
摘要: 自从1895年伦琴发现X射线以来,辐射探测技术快速发展,被广泛应用于医疗影像、安检安防、工业无损检测、核安全监测、资源勘探、基础科学和空间科学等诸多领域。从探测材料和工作原理划分,辐射探测器主要可分为气体探测器、闪烁体探测器和半导体探测器。本文从各类射线与半导体材料的相互作用以及半导体探测器工作原理和信号处理过程入手,探讨了不同辐射类型、不同应用需求对半导体辐射探测器的性能要求以及探测器设计要点,并按照元素族序的顺序对半导体材料在辐射探测领域的性能表现和研究进展进行了综述。
中图分类号:
武蕊, 范东海, 康阳, 万鑫, 郭晨, 魏登科, 陈冬雷, 王涛, 查钢强. 半导体辐射探测材料与器件研究进展[J]. 人工晶体学报, 2021, 50(10): 1813-1829.
WU Rui, FAN Donghai, KANG Yang, WAN Xin, GUO Chen, WEI Dengke, CHEN Donglei, WANG Tao, ZHA Gangqiang. Research Progress on Semiconductor Materials and Devices for Radiation Detection[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(10): 1813-1829.
[1] SIMON R C, JAMES A S, MICHAEL E P. Physics in nuclear medicine: Chapter 6 interaction of radiation with matter[M]. 2th ed. Amsterdam: Saunders, 2012: 63-85. [2] JEN C K. On the induced current and energy balance in electronics[J]. Proceedings of the IRE, 1941, 29(6): 345-349. [3] CAVALLERI G, GATTI E, FABRI G, et al. Extension of Ramo’s theorem as applied to induced charge in semiconductor detectors[J]. Nuclear Instruments and Methods, 1971, 92(1): 137-140. [4] 汤 彬,葛良全,方 方,等.核辐射测量原理[M].第一版.哈尔滨:哈尔滨工程大学出版社,2011. TANG B, GE L Q, FANG F, et al. Principle of nuclear radiation measurement [M]. 1st ed. Harbin: Harbin Engineering University Press, 2011(in Chinese). [5] HALL R N, SOLTYS T J. High purity germanium for detector fabrication[J]. IEEE Transactions on Nuclear Science, 1971, 18(1): 160-165. [6] 岳 骞.高纯锗探测器在粒子物理与天体物理中的应用[J].中国科学:物理学 力学 天文学,2011,41(12):1434-1440. YUE Q. The application of high purity germanium detector in particle and astroparticle physics[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2011, 41(12): 1434-1440(in Chinese). [7] ARMENGAUD E, AUGIER C, et al. Final results of the EDELWEISS-Ⅱ WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes[J]. Physics Letters B, 2011, 702(5): 329-335. [8] EBERTH J, SIMPSON J. From Ge(Li) detectors to gamma-ray tracking arrays-50 years of gamma spectroscopy with germanium detectors[J]. Progress in Particle and Nuclear Physics, 2008, 60(2): 283-337. [9] KEMMER J. Improvement of detector fabrication by the planar process[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1984, 226(1): 89-93. [10] KEMMER J, BURGER P, HENCK R, et al. Performance and applications of passivated ion-implanted silicon detectors[J]. IEEE Transactions on Nuclear Science, 1982, 29(1): 733-737. [11] LUKE P N, GOULDING F S, MADDEN N W, et al. Low capacitance large volume shaped-field germanium detector[J]. IEEE Transactions on Nuclear Science, 1989, 36(1): 926-930. [12] AKIMOV Y K. Silicon radiation detectors (Review)[J]. Instruments and Experimental Techniques, 2007, 50(1): 1-28. [13] PARKER S I, KENNEY C J, SEGAL J. 3D: A proposed new architecture for solid-state radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 395(3): 328-343. [14] DAVIA C, HASI J, KENNEY C, et al. 3D silicon detectors: status and applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 549(1/2/3): 122-125. [15] LI Z. Novel silicon stripixel detector: concept, simulation, design, and fabrication[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 518(3): 738-753. [16] CHEN J W, DING H, LI Z, et al. 3D simulations of device performance for 3D-Trench electrode detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 796: 34-37. [17] KENNEY C J, PARKER S, WALCKIERS E. Results from 3-D silicon sensors with wall electrodes: near-cell-edge sensitivity measurements as a preview of active-edge sensors[J]. IEEE Transactions on Nuclear Science, 2001, 48(6): 2405-2410. [18] LIU X J, BORNEFALK H, CHEN H, et al. A silicon-strip detector for photon-counting spectral CT: energy resolution from 40 keV to 120 keV[J]. IEEE Transactions on Nuclear Science, 2014, 61(3): 1099-1105. [19] TINDALL C, HAU I D, LUKE P N. Evaluation of Si(Li) detectors for use in Compton telescopes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 505(1/2): 130-135. [20] WILLIAMS T, MARTENS A, CASSOU K, et al. Novel applications and future perspectives of a fast diamond gamma ray detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 845: 199-202. [21] EBERHARDT J E, RYAN R D, TAVENDALE A J. High-resolution nuclear radiation detectors from epitaxial n-GaAs[J]. Applied Physics Letters, 1970, 17(10): 427-429. [22] KOBAYASHI T, KURU I, HOJO A, et al. Fe-doped high purity GaAs as a room temperature gamma-ray spectrometric detector[J]. IEEE Transactions on Nuclear Science, 1976, 23(1): 97-101. [23] BENZ K W, IRSIGLER R, LUDWIG J, et al. X-ray detectors based on semi-insulating GaAs substrate[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 322(3): 493-498. [24] BAVDAZ M, PEACOCK A, OWENS A. Future space applications of compound semiconductor X-ray detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 458(1/2): 123-131. [25] LIOLIOU G, BARNETT A M. Prototype GaAs X-ray detector and preamplifier electronics for a deep seabed mineral XRF spectrometer[J]. X-Ray Spectrometry, 2018, 47(3): 201-214. [26] AMENDOLIA S R, ANNOVAZZI A, BIGONGIARI A, et al. A prototype for a mammographic head and related developments[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 518(1/2): 382-385. [27] KANIA D R, LANE S, JONES B, et al. High speed detection of thermonuclear neutrons with solid state detectors[J]. IEEE Transactions on Nuclear Science, 1988, 35(1): 387-388. [28] MCGREGOR D S, HAMMIG M D, YANG Y H, et al. Design considerations for thin film coated semiconductor thermal neutron detectors—I: basics regarding alpha particle emitting neutron reactive films[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 500(1/2/3): 272-308. [29] BELL S L, SEN S. Crystal growth of Cd1-xZnxTe and its use as a superior substrate for LPE growth of Hg0.8Cd0.2Te[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1985, 3(1): 112-115. [30] DOTY F P. Properties of CdZnTe crystals grown by a high pressure Bridgman method[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1992, 10(4): 1418. [31] BARBER H B, BARRETT H H, DERENIAK E L, et al. A gamma-ray imager with multiplexer readout for use in ultra-high-resolution brain SPECT[J]. IEEE Transactions on Nuclear Science, 1993, 40(4): 1140-1144. [32] ROGULSKI M M, BARBER H B, BARRETT H H, et al. Ultra-high-resolution brain SPECT imaging: simulation results[J]. IEEE Conference on Nuclear Science Symposium and Medical Imaging, 1992: 1071-1073 vol.2. [33] HAMILTON W J, RHIGER D R, SEN S, et al. Very high resolution detection of gamma radiation at room-temperature using p-i-n detectors of CdZnTe and HgCdTe[J]. IEEE Transactions on Nuclear Science, 1994, 41(4): 989-992. [34] HAMILTON W J, RHIGER D R, SEN S, et al. HgCdTe/CdZnTe P-I-N high-energy photon detectors[J]. Journal of Electronic Materials, 1996, 25(8): 1286-1292. [35] 杨 帆,王 涛,周伯儒,等.室温核辐射探测器用碲锌镉晶体生长研究进展[J].人工晶体学报,2020,49(4):561-569. YANG F, WANG T, ZHOU B R, et al. Research progress on CdZnTe crystal growth for room temperature radiation detection applications[J]. Journal of Synthetic Crystals, 2020, 49(4): 561-569(in Chinese). [36] WU S H, ZHA G Q, CAO K, et al. The growth of CdZnTe epitaxial thick film by close spaced sublimation for radiation detector[J]. Vacuum, 2019, 168: 108852. [37] ZHA G Q, LIN Y, ZENG D M, et al. Resistive switching properties in CdZnTe films[J]. Applied Physics Letters, 2015, 106(6): 062103. [38] ZHA G Q, YANG J, XU L Y, et al. The effects of deep level traps on the electrical properties of semi-insulating CdZnTe[J]. Journal of Applied Physics, 2014, 115(4): 043715. [39] XU L Y, WANG J Y, DONG J P, et al. Improvement of surface defects in CdZnTe crystals by rapid thermal annealing[J]. Journal of Electronic Materials, 2020, 49(8): 4563-4568. [40] XU L Y, JIE W Q. Deep-level defect effects on the low-temperature photoexcitation process in CdZnTe crystals[J]. Journal of Electronic Materials, 2020, 49(1): 429-434. [41] 谷亚旭.CdZnTe核辐射探测器性能不均匀性研究[D].西安:西北工业大学,2017. GU Y X. Performance non-uniformity of CdZnTe nuclear radiation detectors[D]. Xi'an: Northwestern Polytechnical University, 2017(in Chinese). [42] 查钢强,王 涛,徐亚东,等.新型CZT半导体X射线和γ射线探测器研制与应用展望[J].物理,2013,42(12):862-869. ZHA G Q, WANG T, XU Y D, et al. The development of CZT semiconductor X-ray and γ-ray detectors[J]. Physics, 2013, 42(12): 862-869(in Chinese). [43] 王 涛,徐亚东,查钢强,等.室温辐射探测器用CdZnTe晶体生长及其器件制备[J].机械科学与技术,2010,29(4):546-550. WANG T, XU Y D, ZHA G Q, et al. Detector grade CdZnTe crystal growth and device fabrication[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(4): 546-550(in Chinese). [44] DOTY F P, BARBER H B, AUGUSTINE F L, et al. Pixellated CdZnTe detector arrays[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 353(1/2/3): 356-360. [45] HE Z, KNOLL G F, WEHE D K, et al. Coplanar grid patterns and their effect on energy resolution of CdZnTe detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 411(1): 107-113. [46] MONTEMONT G, ARQUES M, VERGER L, et al. A capacitive Frisch grid structure for CdZnTe detectors[J]. IEEE Transactions on Nuclear Science, 2001, 48(3): 278-281. [47] ERLANDSSON K, HOWELL E, ROTH N, et al. Assessing possible use of CZT technology for application to brain SPECT[C]//2011 IEEE Nuclear Science Symposium Conference Record. October 23-29, 2011, Valencia, Spain. IEEE, 2011: 3354-3358. [48] LIU C, CHAN C, HARRIS M, et al. Respiratory gating for a stationary dedicated cardiac SPECT system[C]//2011 IEEE Nuclear Science Symposium Conference Record. October 23-29, 2011, Valencia, Spain. IEEE, 2011: 2898-2901. [49] 尹永智.基于350微米像素阳极碲锌镉探测器的500微米分辨率的正电子发射断层显像研究[D].兰州:兰州大学,2012. YIN Y Z. Investigation of sub-500 μm PET image based on350 μm pitch pixelated CdZnTe detectors[D]. Lanzhou: Lanzhou University, 2012(in Chinese). [50] BARBER W C, WESSEL J C, NYGARD E, et al. High flux energy-resolved photon-counting X-ray imaging arrays with CdTe and CdZnTe for clinical CT[C]//2013 3rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (ANIMMA). June 23-27, 2013, Marseille, France. IEEE, 2013: 1-5. [51] MATSUURA D, GENBA K, KURODA Y, et al. “ASTROCAM 7000HS” radioactive substance visualization camera[EB/OL]. 2014 [52] MCCLESKEY M, KAYE W, MACKIN D S, et al. Evaluation of a multistage CdZnTe Compton camera for prompt γ imaging for proton therapy[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 785: 163-169. [53] JOHNS P M, NINO J C. Room temperature semiconductor detectors for nuclear security[J]. Journal of Applied Physics, 2019, 126(4): 040902. [54] KASAP S O, ROWLANDS J A. Review X-ray photoconductors and stabilized a-Se for direct conversion digital flat-panel X-ray image-detectors[J]. Journal of Materials Science: Materials in Electronics, 2000, 11(3): 179-198. [55] KASAP S, FREY J B, BELEV G, et al. Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes[J]. Physica Status Solidi (b), 2009, 246(8): 1794-1805. [56] HOKE E T, SLOTCAVAGE D J, DOHNER E R, et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics[J]. Chemical Science, 2015, 6(1): 613-617. [57] QUE W, ROWLANDS J A. X-ray imaging using amorphous selenium: inherent spatial resolution[J]. Medical Physics, 1995, 22(4): 365-374. [58] YUAN Y B, CHAE J, SHAO Y C, et al. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells[J]. Advanced Energy Materials, 2015, 5(15): 1500615. [59] CHEN Q S, WU J, OU X Y, et al. All-inorganic perovskite nanocrystal scintillators[J]. Nature, 2018, 561(7721): 88-93. [60] 许 平.CVD金刚石膜辐射探测器的研制与性能研究[D].衡阳:南华大学,2020. XU P. Development and performance of CVD diamond film radiation detectors[D]. Hengyang: University of South China, 2020(in Chinese). [61] FRANKLIN M, FRY A, GAN K K, et al. Development of diamond radiation detectors for SSC and LHC[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 315(1/2/3): 39-42. [62] HIBINO K, KASHIWAGI T, OKUNO S, et al. The design of diamond Compton telescope[J]. Astrophysics and Space Science, 2007, 309(1/2/3/4): 541-544. [63] LECHNER P, HARTMANN R, SOLTAU H, et al. Pair creation energy and Fano factor of silicon in the energy range of soft X-rays[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 377(2/3): 206-208. [64] TORRISI L, SCIUTO A, CANNAVÒ A, et al. SiC detector for sub-MeV alpha spectrometry[J]. Journal of Electronic Materials, 2017, 46(7): 4242-4249. [65] ROGALLA M, RUNGE K, SÖLDNER-REMBOLD A. Particle detectors based on semi-insulating silicon carbide[J]. Nuclear Physics B-Proceedings Supplements, 1999, 78(1/2/3): 516-520. [66] EBERTH J, SIMPSON J. From Ge(Li) detectors to gamma-ray tracking arrays-50 years of gamma spectroscopy with germanium detectors[J]. Progress in Particle and Nuclear Physics, 2008, 60(2): 283-337. [67] ALEXIEV D, REINHARD M I, MO L, et al. Review of Ge detectors for gamma spectroscopy[J]. Australasian Physics & Engineering Sciences in Medicine, 2002, 25(3): 102-109. [68] SOLTANI A, BARKAD H A, MATTALAH M, et al. 193 nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors[J]. Applied Physics Letters, 2008, 92(5): 053501. [69] LI J, MAJETY S, DAHAL R, et al. Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitride epilayers[J]. Applied Physics Letters, 2012, 101(17): 171112. [70] MAITY A, GRENADIER S J, LI J, et al. High sensitivity hexagonal boron nitride lateral neutron detectors[J]. Applied Physics Letters, 2019, 114(22): 222102. [71] ZHIGAL’SKII G P, KHOLOMINA T A. Excess noise and deep levels in GaAs detectors of nuclear particles and ionizing radiation[J]. Journal of Communications Technology and Electronics, 2015, 60(6): 517-542. [72] ALEXIEV D, BUTCHER K S A. High purity liquid phase epitaxial gallium arsenide nuclear radiation detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1992, 317(1/2): 111-115. [73] KHLUDKOV S S. Diffusion of impurities in GaAs, diffusion structures and devices[J]. Tomsk State University Journal, 2005, (285): 84-94. [74] KANNO I, HISHIKI S, SUGIURA O, et al. InSb cryogenic radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 568(1): 416-420. [75] FUNAKI M, OZAKI T, SATOH K, et al. Growth and characterization of CdTe single crystals for radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 436(1/2): 120-126. [76] SELLIN P J, DAVIES A W, BOROUMAND F, et al. IBIC characterization of charge transport in CdTe∶Cl[J]. Semiconductors, 2007, 41(4): 395-401. [77] YÜCEL H, BIRGÜL Ö, UYAR E, et al. A novel approach in voltage transient technique for the measurement of electron mobility and mobility-lifetime product in CdZnTe detectors[J]. Nuclear Engineering and Technology, 2019, 51(3): 731-737. [78] SZELES C. Advances in the crystal growth and device fabrication technology of CdZnTe room temperature radiation detectors[J]. IEEE Transactions on Nuclear Science, 2004, 51(3): 1242-1249. [79] RAFIEI R, BOARDMAN D, SARBUTT A, et al. Investigation of the charge collection efficiency of CdMnTe radiation detectors[J]. IEEE Transactions on Nuclear Science, 2012, 59(3): 634-641. [80] HOSSAIN A, CUI Y, BOLOTNIKOV A E, et al. Vanadium-doped cadmium manganese telluride (Cd1-xMnxTe) crystals as X- and gamma-ray detectors[J]. Journal of Electronic Materials, 2009, 38(8): 1593-1599. [81] MYCIELSKI A, BURGER A, SOWINSKA M, et al. Is the (Cd, Mn)Te crystal a prospective material for X-ray and γ-ray detectors?[J]. Physica Status Solidi (c), 2005, 2(5): 1578-1585. [82] KABIR M Z, HIJAZI N. Temperature and field dependent effective hole mobility and impact ionization at extremely high fields in amorphous selenium[J]. Applied Physics Letters, 2014, 104(19): 192103. [83] BACIAK J E, HE Z. Long-term stability of 1-cm thick pixelated HgI2 gamma-ray spectrometers operating at room temperature[J]. IEEE Transactions on Nuclear Science, 2004, 51(4): 1886-1894. [84] BURGER A, NASON D, FRANKS L. Mercuric iodide in prospective[J]. Journal of Crystal Growth, 2013, 379: 3-6. [85] BEYERLE A, HULL K, MARKAKIS J, et al. Gamma-ray spectrometry with thick mercuric iodide detectors[J]. Nuclear Instruments and Methods in Physics Research, 1983, 213(1): 107-113. [86] LIU J, ZHANG Y. Growth of lead iodide single crystals used for nuclear radiation detection of Gamma-rays[J]. Crystal Research and Technology, 2017, 52(3): 1600370. [87] MANFREDOTTI C, MURRI R, QUIRINI A, et al. PbI2 as nuclear particle detector[J]. IEEE Transactions on Nuclear Science, 1977, 24(1): 126-128. [88] LINTEREUR A T, QIU W, NINO J C, et al. Iodine based compound semiconductors for room temperature gamma-ray spectroscopy[C]//SPIE Defense and Security Symposium. Proc SPIE 6945, Optics and Photonics in Global Homeland Security Ⅳ, Orlando, Florida, USA. 2008, 6945: 694503. [89] NASON D, KELLER L. The growth and crystallography of bismuth tri-iodide crystals grown by vapor transport[J]. Journal of Crystal Growth, 1995, 156(3): 221-226. [90] JELLISON G E, RAMEY J O, BOATNER L A. Optical functions of BiI3 as measured by generalized ellipsometry[J]. Physical Review B, 1999, 59(15): 9718-9721. [91] HITOMI K, SHOJI T, ISHII K. Advances in TlBr detector development[J]. Journal of Crystal Growth, 2013, 379: 93-98. [92] SHOROHOV M, KOUZNETSOV M, LISITSKIY I, et al. Recent results in TlBr detector crystals performance[J]. IEEE Transactions on Nuclear Science, 2009, 56(4): 1855-1858. [93] KIM H, CIRIGNANO L, CHURILOV A, et al. Developing larger TlBr detector: detector performance[J]. IEEE Transactions on Nuclear Science, 2009, 56(3): 819-823. |
[1] | 开翠红, 王蓉, 杨德仁, 皮孝东. 基于碳化硅衬底的宽禁带半导体外延[J]. 人工晶体学报, 2021, 50(9): 1780-1795. |
[2] | 罗昊, 张序清, 杨德仁, 皮孝东. 碳化硅单晶生长用高纯碳化硅粉体的研究进展[J]. 人工晶体学报, 2021, 50(8): 1562-1574. |
[3] | 姬凯迪, 高灿灿, 杨发顺, 熊倩, 马奎. 后退火气氛对磁控溅射制备β-Ga2O3薄膜材料的影响[J]. 人工晶体学报, 2021, 50(6): 1056-1061. |
[4] | 刘鹏, 朱振, 陈康, 王荣堃, 夏伟, 徐现刚. 高可靠性无铝有源层808 nm半导体激光器泵浦源[J]. 人工晶体学报, 2021, 50(4): 757-761. |
[5] | 陈王义博, 徐俞, 曹冰, 徐科. 宽周期掩膜法HVPE侧向外延自支撑GaN的研究[J]. 人工晶体学报, 2021, 50(3): 416-420. |
[6] | 王婷, 赵红莉, 郭世伟, 姚娟, 李爽, 符跃春, 沈晓明, 何欢. n-In0.35Ga0.65N/p-Si异质结的制备及其电学性能研究[J]. 人工晶体学报, 2021, 50(3): 484-490. |
[7] | 刘奇超, 张会. 低维第五主族纳米材料的研究进展:从结构性质到制备应用[J]. 人工晶体学报, 2021, 50(3): 578-586. |
[8] | 蒋冲, 王一, 丁召, 黄延彬, 罗子江, 李志宏, 李耳士, 郭祥. 分子束外延生长过程中GaAs(001)表面铝液滴的扩散成核过程[J]. 人工晶体学报, 2021, 50(2): 283-289. |
[9] | 高灿灿, 姬凯迪, 马奎, 杨发顺. 磁控溅射衬底加热温度和后退火温度对制备β-Ga2O3薄膜材料的影响[J]. 人工晶体学报, 2021, 50(2): 296-301. |
[10] | 胡雪莹, 董海亮, 贾志刚, 张爱琴, 梁建, 许并社. GaAs基980 nm高功率半导体激光器的研究进展[J]. 人工晶体学报, 2021, 50(2): 381-390. |
[11] | 刘京明, 赵有文. BAs晶体生长研究进展[J]. 人工晶体学报, 2021, 50(2): 391-396. |
[12] | 覃皓明, 申南南, 何亦辉. 熔体法制备无机钙钛矿半导体核辐射探测晶体与器件的研究进展[J]. 人工晶体学报, 2021, 50(10): 1830-1843. |
[13] | 于晖, 张蒙蒙, 杜园园, 席守智, 查钢强, 介万奇. CdZnTe伽马射线探测器的能谱特性分析[J]. 人工晶体学报, 2021, 50(10): 1883-1891. |
[14] | 杜园园, 姜维春, 陈晓, 雒涛. Te溶剂Bridgman法CdMnTe晶体核辐射探测器的制备和表征[J]. 人工晶体学报, 2021, 50(10): 1892-1899. |
[15] | 柏伟, 赵超, 刘铭. 锑化铟晶体材料的发展及应用[J]. 人工晶体学报, 2020, 49(12): 2230-2243. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||