[1] BARSOUM M W. The MN+1AXN phases: a new class of solids: thermodynamically stable nanolaminates[J]. Progress in Solid State Chemistry, 2000, 28(1/2/3/4): 201-281. [2] BARSOUM M W, BRODKIN D, EL-RAGHY T. Layered machinable ceramics for high temperature applications[J]. Scripta Materialia, 1997, 36(5): 535-541. [3] EL-RAGHY T, BARSOUM M W, ZAVALIANGOS A, et al. Processing and mechanical properties of Ti3SiC2: ii, effect of grain size and deformation temperature[J]. Journal of the American Ceramic Society, 1999, 82(10): 2855-2860. [4] BARSOUM M W, EL-RAGHY T, PROCOPIO A. Synthesis of Ti4AlN3 and phase equilibria in the Ti-Al-N system[J]. Metallurgical and Materials Transactions A, 2000, 31(2): 373-378. [5] EL-RAGHY T, CHAKRABORTY S, BARSOUM M W. Synthesis and characterization of Hf2PbC, Zr2PbC and M2SnC(M=Ti, Hf, Nb or Zr)[J]. Journal of the European Ceramic Society, 2000, 20: 2619-2625. [6] FINKEL P, BARSOUM M W, EL-RAGHY T. Low temperature dependencies of the elastic properties of Ti4AlN3, Ti3Al1.1C1.8, and Ti3SiC2[J]. Journal of Applied Physics, 2000, 87(4): 1701-1703. [7] SUN Z M. Progress in research and development on MAX phases: a family of layered ternary compounds[J]. International Materials Reviews, 2011, 56(3): 143-166. [8] SUN Z M, HASHIMOTO H, ZHANG Z F, et al. Synthesis and characterization of a metallic ceramic material-Ti3SiC2[J]. Materials Transactions, 2006, 47(1): 170-174. [9] BARSOUM M W, RADOVIC M. Elastic and mechanical properties of the MAX phases[J]. Annual Review of Materials Research, 2011, 41(1): 195-227. [10] BARSOUM M W. MAX phases[M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. [11] NOWOTNY V H. Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn[J]. Progress in Solid State Chemistry, 1971, 5: 27-70. [12] JEITSCHKO W, NOWOTNY H, BENESOVSKY F. Die H-phasen: Ti2CdC, Ti2GaC, Ti2GaN, Ti2InN, Zr2InN und Nb2GaC[J]. Monatshefte Für Chemie Und Verwandte Teile Anderer Wissenschaften, 1964, 95(1): 178-179. [13] JEITSCHKO W, NOWOTNY H. Die Kristallstruktur von Ti3SiC2—ein neuer Komplexcarbid-Typ[J]. Monatshefte Für Chemie - Chemical Monthly, 1967, 98(2): 329-337. [14] WOLFSGRUBER H, NOWOTNY H, BENESOVSKY F. Die kristallstruktur von Ti3GeC2[J]. Monatshefte Für Chemie Und Verwandte Teile Anderer Wissenschaften, 1967, 98(6): 2403-2405. [15] PIETZKA M A, SCHUSTER J C. Summary of constitutional data on the aluminum-carbon-titanium system[J]. Journal of Phase Equilibria, 1994, 15(4): 392-400. [16] BARSOUM M W, EL-RAGHY T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2[J]. Journal of the American Ceramic Society, 1996, 79(7): 1953-1956. [17] BARSOUM M W, FARBER L, LEVIN I, et al. High-resolution transmission electron microscopy of Ti4AlN3, or Ti3Al2N2 revisited[J]. Journal of the American Ceramic Society, 1999, 82(9): 2545-2547. [18] LIN Z J, ZHUO M J, ZHOU Y C, et al. Microstructures and theoretical bulk modulus of layered ternary tantalum aluminum carbides[J]. Journal of the American Ceramic Society, 2006, 89(12): 3765-3769. [19] DUBOIS S, CABIOC'H T, CHARTIER P, et al. A new ternary nanolaminate carbide: Ti3SnC2[J]. Journal of the American Ceramic Society, 2007, 90(8): 2642-2644. [20] ZHOU Y C, MENG F L, ZHANG J. New MAX-phase compounds in the V-Cr-Al-C system[J]. Journal of the American Ceramic Society, 2008, 91(4): 1357-1360. [21] LAPAUW T, HALIM J, LU J, et al. Synthesis of the novel Zr3AlC2 MAX phase[J]. Journal of the European Ceramic Society, 2016, 36(3): 943-947. [22] LIU Z M, ZHENG L Y, SUN L C, et al. (Cr2/3Ti1/3)3AlC2 and (Cr5/8Ti3/8)4AlC3: new MAX-phase compounds In Ti-Cr-Al-C system[J]. Journal of the American Ceramic Society, 2014, 97(1): 67-69. [23] LIU Z M, WU E D, WANG J M, et al. Crystal structure and formation mechanism of (Cr2/3Ti1/3)3AlC2 MAX phase[J]. Acta Materialia, 2014, 73: 186-193. [24] ANASORI B, HALIM J, LU J, et al. Mo2TiAlC2: a new ordered layered ternary carbide[J]. Scripta Materialia, 2015, 101: 5-7. [25] RAWN C J, BARSOUM M W, EL-RAGHY T, et al. Structure of Ti4AlN3: a layered Mn+1AXn nitride[J]. Materials Research Bulletin, 2000, 35(11): 1785-1796. [26] BARSOUM M W, EL-RAGHY T, PROCOPIO A. Characterization of Ti4AlN3[J]. Metallurgical and Materials Transactions A, 2000, 31(2): 333-337. [27] EKLUND P, PALMQUIST J P, HÖWING J, et al. Ta4AlC3: phase determination, polymorphism and deformation[J]. Acta Materialia, 2007, 55(14): 4723-4729. [28] HU C F, LI F Z, ZHANG J, et al. Nb4AlC3: a new compound belonging to the MAX phases[J]. Scripta Materialia, 2007, 57(10): 893-896. [29] ETZKORN J, ADE M, HILLEBRECHT H. V2AlC, V4AlC3-x (x approximately 0.31), and V12Al3C8: synthesis, crystal growth, structure, and superstructure[J]. Inorganic Chemistry, 2007, 46(18): 7646-7653. [30] HU C F, ZHANG J, WANG J M, et al. Crystal structure of V4AlC3: a new layered ternary carbide[J]. Journal of the American Ceramic Society, 2008, 91(2): 636-639. [31] ANASORI B, DAHLQVIST M, HALIM J, et al. Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3[J]. Journal of Applied Physics, 2015, 118(9): 094304. [32] ISTOMIN P, ISTOMINA E, NADUTKIN A, et al. Synthesis of a bulk Ti4SiC3 MAX phase by reduction of TiO2 with SiC[J]. Inorganic Chemistry, 2016, 55(21): 11050-11056. [33] HÖGBERG H, EKLUND P, EMMERLICH J, et al. Epitaxial Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-phase thin films grown by magnetron sputtering[J]. Journal of Materials Research, 2005, 20(4): 779-782. [34] PALMQUIST J P, LI S, PERSSON P O Å, et al. Mn+1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations[J]. Physical Review B, 2004, 70(16): 165401. [35] ZHANG J, LIU B, WANG J Y, et al. Low-temperature instability of Ti2SnC: a combined transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction investigations[J]. Journal of Materials Research, 2009, 24(1): 39-49. [36] ZHENG L Y, WANG J M, LU X P, et al. (Ti0.5Nb0.5)5AlC4: a new-layered compound belonging to MAX phases[J]. Journal of the American Ceramic Society, 2010, 93(10): 3068-3071. [37] SOKOL M, NATU V, KOTA S, et al. On the chemical diversity of the MAX phases[J]. Trends in Chemistry, 2019, 1(2): 210-223. [38] WANG J Y, ZHOU Y C. Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides[J]. Annual Review of Materials Research, 2009, 39(1): 415-443. [39] WANG X H, ZHOU Y C. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review[J]. Journal of Materials Science & Technology, 2010, 26(5): 385-416. [40] HU C F, ZHANG H B, LI F Z, et al. New phases’ discovery in MAX family[J]. International Journal of Refractory Metals and Hard Materials, 2013, 36: 300-312. [41] EKLUND P, BECKERS M, JANSSON U, et al. The Mn+1AXn phases: materials science and thin-film processing[J]. Thin Solid Films, 2010, 518(8): 1851-1878. [42] RADOVIC M, BARSOUM M W. MAX phases: Bridging the gap between metals and ceramics[J]. American Ceramic Society Bulletin, 2013, 92(3): 20-27. [43] FASHANDI H, DAHLQVIST M, LU J, et al. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC[J]. Nature Materials, 2017, 16(8): 814-818. [44] FASHANDI H, LAI C C, DAHLQVIST M, et al. Ti2Au2C and Ti3Au2C2 formed by solid state reaction of gold with Ti2AlC and Ti3AlC2[J]. Chemical Communications, 2017, 53(69): 9554-9557. [45] LAI C C, FASHANDI H, LU J, et al. Phase formation of nanolaminated Mo2AuC and Mo2(Au1-xGax)2C by a substitutional reaction within Au-capped Mo2GaC and Mo2Ga2C thin films[J]. Nanoscale, 2017, 9(45): 17681-17687. [46] LAI C C, TAO Q Z, FASHANDI H, et al. Magnetic properties and structural characterization of layered (Cr0.5Mn0.5)2AuC synthesized by thermally induced substitutional reaction in (Cr0.5Mn0.5)2GaC[J]. APL Materials, 2018, 6(2): 026104. [47] 李 勉,李友兵,罗 侃,等.基于A位元素置换策略合成新型MAX相材料Ti3ZnC2[J].无机材料学报,2019,34(1):60-64. LI M, LI Y B, LUO K, et al. Synthesis of novel MAX phase Ti3ZnC2 via A-site-element-substitution approach[J]. Journal of Inorganic Materials, 2019, 34(1): 60-64(in Chinese). [48] LI M, LU J, LUO K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society, 2019, 141(11): 4730-4737. [49] LI Y B, LI M, LU J, et al. Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1-x)C2 and its artificial enzyme behavior[J]. ACS Nano, 2019, 13(8): 9198-9205. [50] KUCHIDA S, MURANAKA T, KAWASHIMA K, et al. Superconductivity in Lu2SnC[J]. Physica C: Superconductivity, 2013, 494: 77-79. [51] WANG J J, YE T N, GONG Y T, et al. Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB[J]. Nature Communications, 2019, 10(1): 1-8. [52] ZHOU Y C, XIANG H M, DAI F Z, et al. M2YSi (M=Rh, Ir): theoretically predicted damage-tolerant MAX phase-like layered silicides[J]. Journal of the American Ceramic Society, 2018, 101(1): 365-375. [53] HU C, LAI C C, TAO Q, et al. Mo2Ga2C: a new ternary nanolaminated carbide[J]. Chemical Communications, 2015, 51(30): 6560-6563. [54] LAI C C, MESHKIAN R, DAHLQVIST M, et al. Structural and chemical determination of the new nanolaminated carbide Mo2Ga2C from first principles and materials analysis[J]. Acta Materialia, 2015, 99: 157-164. [55] WANG H C, WANG J N, SHI X F, et al. Possible new metastable Mo2Ga2C and its phase transition under pressure: a density functional prediction[J]. Journal of Materials Science, 2016, 51(18): 8452-8460. [56] MA H D. New ternary nanolaminated carbide Mo2Ga2C: a first-principles comparison with the MAX phase counterpart Mo2GaC[J]. Computational Materials Science, 2016, 117: 422-427. [57] LING W D, WEI P, DUAN J Z, et al. First-principles study of newly synthesized nanolaminate Mo2Ga2C[J]. Modern Physics Letters B, 2017, 31(27): 1750248. [58] CHAIX-PLUCHERY O, THORE A, KOTA S, et al. First-order Raman scattering in three-layered Mo-based ternaries: MoAlB, Mo2Ga2C and Mo2GaC[J]. Journal of Raman Spectroscopy, 2017, 48(5): 631-638. [59] ALI M A, KHATUN M R, JAHAN N, et al. Comparative study of Mo2Ga2C with superconducting MAX phase Mo2GaC: first-principles calculations[J]. Chinese Physics B, 2017, 26(3): 033102. [60] HE H T, JIN S, FAN G X, et al. Synthesis mechanisms and thermal stability of ternary carbide Mo2Ga2C[J]. Ceramics International, 2018, 44(18): 22289-22296. [61] 金 森,王作通,杜亚琼,等.双A层MAX相Mo2Ga2C的热压烧结研究[J].无机材料学报,2020,35(1):41-45. JIN S, WANG Z T, DU Y Q, et al. Hot-pressing sintering of double-A-layer MAX phase Mo2Ga2C[J]. Journal of Inorganic Materials, 2020, 35(1): 41-45(in Chinese). [62] 金 森,周爱国,胡前库,等.三元碳化物Mo2Ga2C及其二维衍生物的研究进展[J].硅酸盐通报,2020,39(3):866-872+909. JIN S, ZHOU A G, HU Q K, et al. Progress in ternary carbide Mo2Ga2C and its two-dimensional derivatives[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 866-872+909(in Chinese). [63] JIN S, SU T C, HU Q K, et al. Thermal conductivity and electrical transport properties of double-A-layer MAX phase Mo2Ga2C[J]. Materials Research Letters, 2020, 8(4): 158-164. [64] TOTH L E. High superconducting transition temperatures in the molybdenum carbide family of compounds[J]. Journal of the Less Common Metals, 1967, 13(1): 129-131. [65] THORE A, DAHLQVIST M, ALLING B, et al. Phase stability of the nanolaminates V2Ga2C and (Mo1-xVx)2Ga2C from first-principles calculations[J]. Physical Chemistry Chemical Physics, 2016, 18(18): 12682-12688. [66] CHEN H X, YANG D L, ZHANG Q H, et al. A series of MAX phases with MA-triangular-prism bilayers and elastic properties[J]. Angewandte Chemie International Edition, 2019, 58(14): 4576-4580. [67] MANOUN B, SAXENA S K, EL-RAGHY T, et al. High-pressure X-ray diffraction study of Ta4AlC3[J]. Applied Physics Letters, 2006, 88(20): 201902. [68] HADI M A, RAYHAN M A, NAQIB S H, et al. Structural, elastic, thermal and lattice dynamic properties of new 321 MAX phases[J]. Computational Materials Science, 2019, 170: 109144. |