[1] KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature, 1931, 127(3211): 741. [2] KISTLER S S. Coherent expanded-aerogels[J]. The Journal of Physical Chemistry, 1932, 36(1): 52-64. [3] CANTIN M, CASSE M, KOCH L, et al. Silica aerogels used as Cherenkov radiators[J]. Nuclear Instruments and Methods, 1974, 118(1): 177-182. [4] HRUBESH L W. Aerogel applications[J]. Journal of Non-Crystalline Solids, 1998, 225: 335-342. [5] JONES S M. Aerogel: Space exploration applications[J]. Journal of Sol-Gel Science and Technology, 2006, 40(2/3): 351-357. [6] BURCHELL M J, GRAHAM G, KEARSLEY A. Cosmic dust collection in aerogel[J]. Annual Review of Earth and Planetary Sciences, 2006, 34(1): 385-418. [7] TABATA M, IMAI E, YANO H, et al. Design of a silica-aerogel-based cosmic dust collector for the tanpopo mission aboard the international space station[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2014, 12(ists29): Pk_29-Pk_34. [8] GOETZBERGER A, WITTWER V. Translucent insulation for passive solar energy utilization in buildings[C]//Aerogels, 1986. DOI:10.1007/978-3-642-93313-4_10. [9] RUBIN M, LAMPERT C M. Transparent silica aerogels for window insulation[J]. Solar Energy Materials, 1983, 7(4): 393-400. [10] FESMIRE J E. Aerogel insulation systems for space launch applications[J]. Cryogenics, 2006, 46(2/3): 111-117. [11] NG T Y, YEO J J, LIU Z S. A molecular dynamics study of the thermal conductivity of nanoporous silica aerogel, obtained through negative pressure rupturing[J]. Journal of Non-Crystalline Solids, 2012, 358(11): 1350-1355. [12] YEO J J, LIU Z S, NG T Y. Enhanced thermal characterization of silica aerogels through molecular dynamics simulation[J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(7): 075004. [13] RIVAS MURILLO J S, BACHLECHNER M E, CAMPO F A, et al. Structure and mechanical properties of silica aerogels and xerogels modeled by molecular dynamics simulation[J]. Journal of Non-Crystalline Solids, 2010, 356(25/26/27): 1325-1331. [14] LEI J C, LIU Z S, YEO J, et al. Determination of the Young′s modulus of silica aerogels-an analytical-numerical approach[J]. Soft Matter, 2013, 9(47): 11367. [15] FERREIRO-RANGEL C A, GELB L D. Computational study of uniaxial deformations in silica aerogel using a coarse-grained model[J]. The Journal of Physical Chemistry B, 2015, 119(27): 8640-8650. [16] PATIL S. Nanoindentation of graphene-reinforced silica aerogel: a molecular dynamics study[J]. Molecules, 2019, 24(7): 1336. [17] TILLOTSON T M, HRUBESH L W. Transparent ultralow-density silica aerogels prepared by a two-step Sol-gel process[J]. Journal of Non-Crystalline Solids, 1992, 145: 44-50. [18] CROSS J, GOSWIN R, GERLACH R, et al. Mechanical properties of SiO2 - aerogels[J]. Le Journal De Physique Colloques, 1989, 24(C4): C4-185-C4-190. [19] LEMAY J D, TILLOTSON T M, HRUBESH L W, et al. Microstructural dependence of aerogel mechanical properties[J]. MRS Proceedings, 1990, 180: 321. [20] WOIGNIER T, PELOUS J, PHALIPPOU J, et al. Elastic properties of silica aerogels[J]. Journal of Non-Crystalline Solids, 1987, 95/96: 1197-1202. [21] WEI G S, LIU Y S, DU X Z, et al. Gaseous conductivity study on silica aerogel and its composite insulation materials[J]. Journal of Heat Transfer, 2012, 134(4): 041301. [22] EBERT H P. Thermal properties of aerogels[M]//Aerogels Handbook. New York: Springer New York, 2011: 537-564. [23] FRICKE J. Aerogels: highly tenuous solids with fascinating properties[J]. Journal of Non-Crystalline Solids, 1988, 100(1/2/3): 169-173. [24] VAN BEEST B W, KRAMER G J, VAN SANTEN R A. Force fields for silicas and aluminophosphates based on ab initio calculations[J]. Physical Review Letters, 1990, 64(16): 1955-1958. [25] KRAMER G J, FARRAGHER N P, VAN BEEST B W, et al. Interatomic force fields for silicas, aluminophosphates, and zeolites: derivation based on ab initio calculations[J]. Phys Rev B Condens Matter, 1991, 43(6): 5068-5080. [26] TSUNEYUKI S, TSUKADA M, AOKI H, et al. First-principles interatomic potential of silica applied to molecular dynamics[J]. Physical Review Letters, 1988, 61(7): 869-872. [27] GUISSANI Y, GUILLOT B. A numerical investigation of the liquid-vapor coexistence curve of silica[J]. The Journal of Chemical Physics, 1996, 104(19): 7633-7644. [28] CARRÉ A, BERTHIER L, HORBACH J, et al. Amorphous silica modeled with truncated and screened Coulomb interactions: a molecular dynamics simulation study[J]. The Journal of Chemical Physics, 2007, 127(11): 114512. [29] VASHISHTA P, KALIA R K, RINO J P, et al. Interaction potential for SiO2: a molecular-dynamics study of structural correlations[J]. Phys Rev B Condens Matter, 1990, 41(17): 12197-12209. [30] NAKANO A, BI L, KALIA R K, et al. Structural correlations in porous silica: molecular dynamics simulation on a parallel computer[J]. Physical Review Letters, 1993, 71(1): 85-88. [31] PATIL S P, REGE A, SAGARDAS, et al. Mechanics of nanostructured porous silica aerogel resulting from molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2017, 121(22): 5660-5668. [32] TERSOFF J. New empirical approach for the structure and energy of covalent systems[J]. Phys Rev B Condens Matter, 1988, 37(12): 6991-7000. [33] NG T Y, JOSHI S C, YEO J, et al. Effects of nanoporosity on the mechanical properties and applications of aerogels in composite structures. Advances in Nanocomposites, 2016. DOI:10.1007/978-3-319-31662-8_4. [34] PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. [35] KIEFFER J, ANGELL C A. Generation of fractal structures by negative pressure rupturing of SiO2 glass[J]. Journal of Non-Crystalline Solids, 1988, 106(1/2/3): 336-342. [36] YEO J J. Modeling and simulation of the structural evolution and thermal properties of ultralight aerogel and 2D materials[D]. Singapore: Nanyang Technological University, 2014. DOI:10.32657/10356/61804 [37] GELB L D. Simulation and modeling of aerogels using atomistic and mesoscale methods aerogels handbook. 2011. DOI:10.1007/978-1-4419-7589-8_24. [38] VACHER R, WOIGNIER T, PHALIPPOU J, et al. Fractal structure of base catalyzed and densified silica aerogels[J]. Journal of Non-Crystalline Solids, 1988, 106(1/2/3): 161-165. [39] VACHER R, WOIGNIER T, PELOUS J, et al. Structure and self-similarity of silica aerogels[J]. Phys Rev B Condens Matter, 1988, 37(11): 6500-6503. [40] GONÇALVES W, MORTHOMAS J, CHANTRENNE P, et al. Elasticity and strength of silica aerogels: a molecular dynamics study on large volumes[J]. Acta Materialia, 2018, 145: 165-174. [41] WOIGNIER T, PHALIPPOU J, VACHER R, et al. Different kinds of fractal structures in silica aerogels[J]. Journal of Non-Crystalline Solids, 1990, 121(1/2/3): 198-201. [42] KALLALA M, JULLIEN R, CABANE B. Crossover from gelation to precipitation[J]. Journal De Physique II, 1992, 2(1): 7-25. [43] EMMERLING A, FRICKE J. Scaling properties and structure of aerogels[J]. Journal of Sol-Gel Science and Technology, 1997, 8(1): 781-788. [44] NAKAYAMA T, YAKUBO K, ORBACH R L. Dynamical properties of fractal networks: scaling, numerical simulations, and physical realizations[J]. Reviews of Modern Physics, 1994, 66(2): 381. [45] ZOSIMOV V V, LYAMSHEV L M. Fractals in wave processes[J]. Physics-Uspekhi, 1995, 38(4): 347-384. [46] BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8): 3684-3690. [47] SCHNEIDER T, STOLL E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions[J]. Physical Review B, 1978, 17(3): 1302. [48] WOIGNIER T, REYNES J, HAFIDI ALAOUI A, et al. Different kinds of structure in aerogels: relationships with the mechanical properties[J]. Journal of Non-Crystalline Solids, 1998, 241(1): 45-52. [49] CAMPBELL T, KALIA R K, NAKANO A, et al. Structural correlations and mechanical behavior in nanophase silica glasses[J]. Physical Review Letters, 1999, 82(20): 4018. [50] GROΒ J, FRICKE J. Scaling of elastic properties in highly porous nanostructured aerogels[J]. Nanostructured Materials, 1995, 6(5/6/7/8): 905-908. [51] PATIL S P, REGE A, ITSKOV M, et al. Fracture of silica aerogels: an all-atom simulation study[J]. Journal of Non-Crystalline Solids, 2018, 498: 125-129. [52] 吴晓栋,崔 升,王 岭,等.耐高温气凝胶隔热材料的研究进展[J].材料导报,2015,29(9):102-108. WU X D, CUI S, WANG L, et al. Advance in research of high temperature resistant aerogel used as insulation material[J]. Materials Review, 2015, 29(9): 102-108(in Chinese). [53] LEE O J, LEE K H, JIN YIM T, et al. Determination of mesopore size of aerogels from thermal conductivity measurements[J]. Journal of Non-Crystalline Solids, 2002, 298(2/3): 287-292. [54] KUHN J, GLEISSNER T, ARDUINI-SCHUSTER M C, et al. Integration of mineral powders into SiO2 aerogels[J]. Journal of Non-Crystalline Solids, 1995, 186: 291-295. [55] RAPAPORT D C. The art of molecular dynamics simulation[M]. Cambridge: Cambridge University Press, 2004. [56] MÜLLER-PLATHE F, BORDAT P. Reverse non-equilibrium molecular dynamics[M]//Novel Methods in Soft Matter Simulations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 310-326. [57] JUND P, JULLIEN R. Molecular-dynamics calculation of the thermal conductivity of vitreous silica[J]. Physical Review B, 1999, 59(21): 13707. [58] COQUIL T, FANG J, PILON L. Molecular dynamics study of the thermal conductivity of amorphous nanoporous silica[J]. International Journal of Heat and Mass Transfer, 2011, 54(21/22): 4540-4548. |