[1] STRICKLAND D, MOUROU G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. [2] ANDRIUKAITIS G, BALCIUNAS T, ALIAUSKAS S, et al. 90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier[J]. Optics Letters, 2011, 36(15): 2755-2757. [3] CHEN C T, WANG G L, WANG X Y, et al. Deep-UV nonlinear optical crystal KBe2BO3F2:discovery, growth, optical properties and applications[J]. Applied Physics B, 2009, 97(1): 9-25. [4] KMETEC, GORDON, MACKLIN, et al. MeV X-ray generation with a femtosecond laser[J]. Physical Review Letters, 1992, 68(10): 1527-1530. [5] MALKA V. Electron acceleration by a wake field forced by an intense ultrashort laser pulse[J]. Science, 2002, 298(5598): 1596-1600. [6] KELLER U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831-838. [7] KELLER U. Ultrafast solid-state lasers[J]. Progress in Optics, 2000, 37(4): 1 pp. [8] KOECHNER W. Properties of solid-state laser materials[M]//Springer Series in Optical Sciences. New York, NY: Springer New York, 38-101. [9] KANCHANAVALEERAT E, COCHET-MUCHY D, KOKTA M, et al. Crystal growth of high doped Nd:YAG[J]. Optical Materials, 2004, 26(4): 337-341. [10] YU H H, LIU J H, ZHANG H J, et al. Advances in vanadate laser crystals at a lasing wavelength of 1 micrometer[J]. Laser & Photonics Reviews, 2014, 8(6): 847-864. [11] AGNESI A, DELL′ACQUA S, GUANDALINI A, et al. Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal[J]. IEEE Journal of Quantum Electronics, 2001, 37(2): 304-313. [12] MA J, PAN Z B, CAI H Q, et al. Sub-80 femtosecond pulses generation from a diode-pumped mode-locked Nd:Ca3La2(BO3)4 disordered crystal laser[J]. Optics Letters, 2016, 41(7): 1384-1387. [13] MOUCHOVSKI J T, TEMELKOV K A, VUCHKOV N K. The growth of mixed alkaline-earth fluorides for laser host applications[J]. Progress in Crystal Growth and Characterization of Materials, 2011, 57(1): 1-41. [14] LUPEI A, LUPEI V, GHEORGHE L, et al. The nature of nonequivalent Nd3+ centers in CNGG and CLNGG[J]. Optical Materials, 2001, 16(3): 403-411. [15] ES′KOV N A, FAERMAN M D, SUROVA N A, et al. Continuous series of solid solution with the garnet structure in the CaO-Nb2O5-Ga2O3-GeO2 system[EB/OL]. 1985. [16] YU Y G, WANG J Y, ZHANG H J, et al. Thermal characterization of lowly Nd3+doped disordered Nd:CNGG crystal[J]. Optics Express, 2009, 17(11): 9270-9275. [17] ZHANG H J, LIU J H, WANG J Y, et al. Spectroscopic properties and continuous-wave laser operation of a new disordered crystal: Yb-doped CNGG[J]. Optics Express, 2007, 15(15): 9464-9469. [18] CATLOW C R A, CHADWICK A V, GREAVES G N, et al. Direct observations of the dopant environment in fluorites using EXAFS[J]. Nature, 1984, 312(5995): 601-604. [19] WANG Q G, SU L B, ZHENG L H, et al. Growth and spectroscopic characteristics of Er-doped CeF3-CaF2 disordered crystals[J]. Journal of the American Ceramic Society, 2011: 972-976. [20] YU H H, ZHANG H J, WANG Z P, et al. High-power dual-wavelength laser with disordered Nd:CNGG crystals[J]. Optics Letters, 2009, 34(2): 151-153. [21] YU H H, ZHANG H J, WANG Z P, et al. Continuous-wave and passively Q-switched laser performance with a disordered Nd:CLNGG crystal[J]. Optics Express, 2009, 17(21): 19015-19020. [22] NAITO K, YOKOTANI A, SASAKI T, et al. Efficient laser-diode-pumped neodymium-doped calcium-niobium-gallium-garnet laser[J]. Applied Optics, 1993, 32(36): 7387-7390. [23] MUKHOPADHYAY P K, RANGANATHAN K, GEORGE J, et al. 1.6 W of TEM00 cw output at 1.06 μm from Nd:CNGG laser end-pumped by a fiber-coupled diode laser array[J]. Optics & Laser Technology, 2003, 35(3): 173-180. [24] VORONKO Y K, ES’KOV N A, PODSTAVKIN A S, et al. Calcium-niobium-gallium and calcium-lithium-niobium-gallium garnet crystals as active media for diode-pumped lasers[J]. Quantum Electronics, 2001, 31(6): 531-533. [25] XIE G Q, TANG D Y, LUO H, et al. Dual-wavelength synchronously mode-locked Nd:CNGG laser[J]. Optics Letters, 2008, 33(16): 1872-1874. [26] XIE G Q, TANG D Y, TAN W D, et al. Subpicosecond pulse generation from a Nd:CLNGG disordered crystal laser[J]. Optics Letters, 2009, 34(1): 103-105. [27] XIE G Q, QIAN L J, YUAN P, et al. Generation of 534 fs pulses from a passively mode-locked Nd:CLNGG-CNGG disordered crystal hybrid laser[J]. Laser Physics Letters, 2010, 7(7): 483-486. [28] LIU J H, WAN Y, ZHOU Z C, et al. Comparative study on the laser performance of two Yb-doped disordered garnet crystals: Yb:CNGG and Yb:CLNGG[J]. Applied Physics B, 2012, 109(2): 183-188. [29] ZHANG Y G, PETROV V, GRIEBNER U, et al. Diode-pumped SESAM mode-locked Yb:CLNGG laser[J]. Optics & Laser Technology, 2015, 69: 144-147. [30] ZHANG Y G, PETROV V, GRIEBNER U, et al. 90-fs diode-pumped Yb:CLNGG laser mode-locked using single-walled carbon nanotube saturable absorber[J]. Optics Express, 2014, 22(5): 5635-5640. [31] XIE G Q, TANG D Y, TAN W D, et al. Diode-pumped passively mode-locked Nd:CTGG disordered crystal laser[J]. Applied Physics B, 2009, 95(4): 691-695. [32] JIANG D P, ZHAN Y Y, ZHANG Q, et al. Nd,Y:CaF2 laser crystals: novel spectral properties and laser performance from a controlled local structure[J]. CrystEngComm, 2015, 38(7): 7398-7405. [33] QIN Z P, XIE G Q, MA J, et al. Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd, Y:CaF2 disordered crystal[J]. Optics Letters, 2014, 39(7): 1737-1739. [34] SCOTT M A, RUSSELL D L, HENDERSON B, et al. Crystal growth and optical characterisation of novel 3d2 ion laser hosts[J]. Journal of Crystal Growth, 1998, 183(3): 366-376. [35] RYBA-ROMANOWSKI W, GOLAB S, DOMINIAK-DZIK G, et al. Effect of substitution of barium by strontium on optical properties of neodymium-doped XLaGa3O7 (X≡Ba, Sr)[J]. Materials Science and Engineering: B, 1992, 15(3): 217-221. [36] VERDÚN H R, BLACK L R, DE LA FUENTE G F, et al. Growth and characterization of Nd-doped aluminates and gallates with the melilite structure[C]//Advanced Solid State Lasers. Cape Cod, Massachusetts. Washington, D.C.: OSA, 1989: 405-407. [37] HANSON F, ROSER M. Gain saturation in Nd:SrGdGa3O7[C]//Advanced Solid State Lasers. Santa Fe, New Mexico. Washington, D.C.: OSA, 1992: 206-208. [38] PRACKA I, GIERSZ W, SWIRKOWICZ M, et al. The Czochralski growth of SrLaGa3O7 single crystals and their optical and lasing properties[J]. Materials Science and Engineering: B, 1994, 26(2/3): 201-206. [39] RYBA-ROMANOWSKI W, GOLAB S, HANUZA J, et al. Relaxation of the 4F3/2 level of Nd3+ in BaLa1-xNdxGa3O7[J]. Journal of Physics and Chemistry of Solids, 1989, 50(7): 685-692. [40] RANDLES M H, CREAMER J E, BELT R F, et al. Disordered oxide crystals as hosts for diode-pumped lasers[C]//Advanced Solid State Lasers. Santa Fe, New Mexico. Washington, D.C.: OSA, 1992: 318-321. [41] PIEKARCZYK W, BERKOWSKI M, JASIOLEK G. The Czochralski growth of BaLaGa3O7 single crystals[J]. Journal of Crystal Growth, 1985, 71(2): 395-398. [42] RYBA-ROMANOWSKI W, GOLAB S, PISARSKI W A, et al. Growth and characterization of new disordered crystals for the design of all solid state lasers[C]//Proc SPIE 2780, Metal/Nonmetal Microsystems: Physics, Technology, and Applications, 1996, 2780: 371-374. [43] RYBA-ROMANOWSKI W, SOKÒLSKA I, GOMATHAB S, et al. Laser diode end-pumped CW BaLaGa3O7:Nd laser[J]. Le Journal De Physique IV, 1994, 4(C4): C4-301-C4-304. [44] KUSHAWAHA V, MAJOR L. Pulsed laser performance at 1.06 μm from Nd:SGGM[J]. Applied Physics B, 1993, 57(6): 447-449. [45] KUSHAWAHA V, MICHAEL A. Q-switched operation of a Nd:SGGM laser[J]. Optics & Laser Technology, 1995, 27(2): 137-138. [46] TERENTIEV A V, PROKOSHIN P V, YUMASHEV K V, et al. Passive mode locking of a Nd3+:SrLaGa3O7 laser[J]. Applied Physics Letters, 1995, 67(17): 2442-2444. [47] KUSHAWAHA V, CHEN Y. CW and quasi-CW diode-laser-pumped Nd:SSGM[J]. Applied Physics B, 1995, 60(1): 67-69. [48] BOUGHTON R I. Synthesis, growth, and characterization of Nd-doped SrGdGa3O7 crystal[J]. Journal of Applied Physics, 2010, 108(6): 063534. [49] ZHANG Y Y, ZHANG H J, YU H H, et al. Characterization of disordered melilite Nd:SrLaGa3O7 crystal[J]. IEEE Journal of Quantum Electronics, 2011, 47(12): 1506-1513. [50] ZHANG Y Y, YIN X, YU H H, et al. Growth and piezoelectric properties of melilite ABC3O7 crystals[J]. Crystal Growth & Design, 2012, 12(2): 622-628. [51] ZHANG Y Y, WANG X P, YANG Y G, et al. Thermal and spectroscopic characteristics of disordered melilite Nd:BaLaGa3O7 crystal[J]. RSC Advances, 2015, 5(93): 76575-76581. [52] KITTEL C. Interpretation of the thermal conductivity of glasses[J]. Physical Review, 1949, 75(6): 972. [53] KAMINSKII A A, Laser crystals: their physics and properties[M] Berlin: Springer-Verlag, 1981. [54] CHEN Y F, LIANG H C, TUNG J C, et al. Spontaneous subpicosecond pulse formation with pulse repetition rate of 80 GHz in a diode-pumped Nd:SrGdGa3O7 disordered crystal laser[J]. Optics Letters, 2012, 37(4): 461-463. [55] AGNESI A, PIRZIO F, TARTARA L, et al. 378 fs pulse generation with Nd3+:SrLaGa3O7(Nd:SLG) disordered crystal[J]. Laser Physics Letters, 2013, 10(10): 105815. [56] AGNESI A, PIRZIO F, TARTARA L, et al. Tunable femtosecond laser based on the Nd3+:BaLaGa3O7disordered crystal[J]. Laser Physics Letters, 2014, 11(3): 035802. [57] KAMINSKII A A, MILL B V, KHODZHABAGYAN G G, et al. Investigation of trigonal (La1-xNdx)3Ga5SiO14 crystals. I. Growth and optical Properties[J]. Physica Status Solidi (a), 1983, 80(1): 387-398. [58] 于永贵.几种氧化物晶体的数值模拟、生长及性质研究[D].济南:山东大学,2009. YU Y G. Numerical simulation, growth and characterization of several kinds of oxide crystals[D]. Jinan: Shandong University, 2009(in Chinese). [59] YU Y G, WANG J Y, ZHANG H J, et al. Continuous wave and Q-switched laser output of laser-diode-end-pumped disordered Nd:LGS laser[J]. Optics Letters, 2009, 34(4): 467-469. [60] KAMINSKII A A, SILVESTROVA I M, SARKISOV S E, et al. Investigation of trigonal (La1-xNdx)3Ga5SiO14 crystals. II. Spectral laser and electromechanical properties[J]. Physica Status Solidi (a), 1983, 80(2): 607-620. [61] KAMINSKII A A. On the laws of crystal-field disorder of Ln3+ ions in insulating crystals[J]. Physica Status Solidi (a), 1987, 102(1): 389-397. [62] KAMINSKII A A, VERDUN G R, MILL B V, et al. Inorg. New diode-laser-pumped continuous lasers based on compounds hacing the structure of calcium gallogermanate with Nd3+ ions[J]. Mater. 28 (1992) 114-118. [63] WANG Q, WEI Z Y, ZHANG Y D, et al. Tunable continuous-wave laser at quasi-three-level with a disordered Nd:LGS crystal[J]. Optics Letters, 2011, 36(10): 1770-1772. [64] WANG Q, WEI Z Y, LIU J X, et al. Mode-locked Nd:LGS laser with femtosecond pulse duration[J]. 2013: ThA3_7. [65] LIU J X, WANG Z H, HE K N, et al. Passively mode-locked femtosecond laser with an Nd-doped La3Ga5SiO14 disordered crystal[J]. Optics Express, 2014, 22(22): 26933-26938. [66] PAJACZKOWSKA A, GLOUBOKOV A. Synthesis, growth and characterization of tetragonal ABCO4 crystals[J]. Progress in Crystal Growth and Characterization of Materials, 1998, 36(1/2): 123-162. [67] TAN W D, TANG D Y, XU C W, et al. Evidence of dissipative solitons in Yb3+:CaYaLO4[J]. Optics Express, 2011, 19(19): 18495. [68] KONG L C, QIN Z P, XIE G Q, et al. Dual-wavelength synchronous operation of a mode-locked 2-μm Tm:CaYAlO4 laser[J]. Optics Letters, 2015, 40(3): 356-358. [69] QIN Z P, XIE G Q, KONG L C, et al. Diode-pumped passively mode-locked Tm:CaGdAlO4 laser at 2 μm wavelength[J]. IEEE Photonics Journal, 2015, 7(1): 1-5. [70] ZHOU D H, DI J Q, XIA C T, et al. Spectroscopy and laser operation of Ho:CaYAlO4[J]. Optical Materials Express, 2013, 3(3): 339-345. [71] DI J Q, ZHOU D H, XU X D, et al. Spectroscopic properties of Tm, Ho:CaYAlO4 single crystal[J]. Crystal Research and Technology, 2014, 49(7): 446-451. [72] DI J Q, XU X D, XIA C T, et al. Growth and spectra properties of Tm, Ho doped and Tm, Ho co-doped CaGdAlO4 crystals[J]. Journal of Luminescence, 2014, 155: 101-107. [73] DI J Q, XU X D, XIA C T, et al. Growth, luminescence and energy transfer studies of Pr3+, Yb3+ co-doped CaYAlO4 single crystal[J]. Physica B: Condensed Matter, 2013, 408: 1-5. [74] LI R J, XU X D, SU L B, et al. Crystal characterization and optical spectroscopy of Eu3+-doped CaGdAlO4 single crystal fabricated by the floating zone method[J]. Chinese Optics Letters, 2016, 14(2): 021602. [75] ZHOU D H, XU X D, CHEN X Y, et al. Crystal growth and spectroscopic properties of Er3+-doped CaYAlO4[J]. Physica Status Solidi (a), 2012, 209(4): 730-735. [76] LI D Z, XU X D, CHENG S S, et al. Polarized spectral properties of Nd3+ ions in CaYAlO4 crystal[J]. Applied Physics B, 2010, 101(1/2): 199-205. [77] LI D Z, XU X D, ZHU H M, et al. Characterization of laser crystal Yb:CaYAlO4[J]. Josa B, 2011, 28(7): 1650-1654. [78] LI D Z, XU X D, CHENG Y, et al. Crystal growth and spectroscopic properties of Yb:CaYAlO4 single crystal[J]. Journal of Crystal Growth, 2010, 312(14): 2117-2121. [79] LAGATSKII A A, KULESHOV N V, SHCHERBITSKII V G, et al. Lasing characteristics of a diode-pumped Nd3+:CaGdAlO4 crystal[J]. Quantum Electronics, 1997, 27(1): 15-17. [80] HE K N, LIU J X, WEI L, et al. Diode-pumped passively mode-locked 1 079 nm Nd:CaGdAlO4 laser[J]. Chinese Physics Letters, 2016, 33(1): 014203. [81] TAN W D, TANG D Y, XU X D, et al. Room temperature diode-pumped Yb:CaYAlO4 laser with near quantum limit slope efficiency[J]. Laser Physics Letters, 2011, 8(3): 193-196. [82] TAN W D, TANG D Y, XU X D, et al. Femtosecond and continuous-wave laser performance of a diode-pumped Yb3+:CaYaLO4 laser[J]. Optics Letters, 2011, 36(2): 259-261. [83] LI D Z, XU X D, MENG J Q, et al. Diode-pumped continuous wave and Q-switched operation of Nd:CaYAlO4 crystal[J]. Opt Express, 2010,18:18649-18655. [84] LIU S D, DONG L L, ZHENG L H, et al. High-power femtosecond pulse generation in a passively mode-locked Nd:SrLaAlO4laser[J]. Applied Physics Express, 2016, 9(7): 072701. [85] GAO Z Y, ZHU J F, WANG J L, et al. Generation of 33 fs pulses directly from a Kerr-lens mode-locked Yb:CaYAlO4 laser[J]. Photonics Research, 2015, 3(6): 335-338. [86] YU H H, XU X D, LI D Z, et al. High-power disordered Nd:CaYAlO4lasers at 1.08 M[J]. Optics Letters, 2010, 35(15): 2666-2668. [87] CONG Z H, TANG D Y, TAN W D, et al. Diode-end-pumped Nd:CaYAlO4 mode locked laser[J]. Optics Communications, 2011, 284(7): 1967-1969. [88] RAO H, CONG Z H, QIN Z G, et al. A diode pumped passively mode-locked Nd:CaGdAlO4 laser[J]. Laser Physics, 2016, 26(4): 045802. [89] GAO Z Y, ZHU J F, WANG J L, et al. Diode-pumped Kerr-lens mode-locked Yb:CaGdAlO4 laser with tunable wavelength[J]. Laser Physics Letters, 2016, 13(1): 015302. [90] WANG Y, TU C Y, HUANG C C, et al. Study of crystal Yb3+:Ca3Y2(BO3)4[J]. Journal of Materials Research, 2004, 19(4): 1203-1207. [91] PAN Z B, CONG H J, YU H H, et al. Growth, thermal properties and laser operation of Nd:Ca3La2(BO3)4: a new disordered laser crystal[J]. Optics Express, 2013, 21(5): 6091-6100. [92] PAN Z B, CAI H Q, HUANG H, et al. Growth, thermal properties and laser operation of a new disordered crystal: Nd-doped Sr3La2(BO3)4[J]. Journal of Alloys and Compounds, 2014, 607: 16-22. [93] PAN Z B, ZHANG H J, YU H H, et al. Growth and characterization of Nd-doped disordered Ca3Gd2(BO3)4 crystal[J]. Applied Physics B, 2012, 106(1): 197-209. [94] PAN Z B, YU H H, CONG H J, et al. Polarized spectral properties and laser demonstration of Nd-doped Sr3Y2(BO3)4 crystal[J]. Applied Optics, 2012, 51(30): 7144-7149. [95] PAN Z B, CONG H J, YU H H, et al. Growth, morphology and anisotropic thermal properties of Nd-doped Sr3Y2(BO3)4 crystal[J]. Journal of Crystal Growth, 2013, 363: 176-184. [96] DESHAZER L G, PIORRO R J S, Novel neodymtam hosts[C]. Conference on Lasers and Electro-Optics (Optical Society of America), 1992. [97] SATO Y, TAIRA T. Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4[C]//2007 Quantum Electronics and Laser Science Conference. May 6-11, 2007, Baltimore, MD, USA. IEEE, 2007: 1-2. [98] CHOY C L, LEUNG W P, XI T G, et al. Specific heat and thermal diffusivity of strontium Barium niobate (Sr1-xBaxNb2O6) single crystals[J]. Journal of Applied Physics, 1992, 71(1): 170-173. [99] PAN Z B, MA J, XU H H, et al. 251 fs pulse generation with a Nd3+-doped Ca3Gd2(BO3)4 disordered crystal[J]. RSC Advances, 2015, 5(55): 44137-44141. |