[1] CHEN J, SARMA B, EVANS J M B, et al. Pharmaceutical crystallization[J]. Crystal Growth & Design, 2011, 11(4): 887-895. [2] BERNSTEIN J. Polymorphism in molecular crystals[M]. Oxford: Oxford University Press, 2002. [3] BUCAR D K, LANCASTER R W, BERNSTEIN J. Disappearing polymorphs revisited[J]. Angewandte Chemie International Edition, 2015, 54(24): 6972-6993. [4] BERNSTEIN J, DAVEY R J, HENCK J O. Concomitant polymorphs[J]. Angewandte Chemie International Edition, 1999, 38(23): 3440-3461. [5] CRUZ-CABEZA A J, FEEDER N, DAVEY R J. Open questions in organic crystal polymorphism[J]. Communications Chemistry, 2020, 3: 142. [6] MELDRUM F C, SEAR R P. Now You see them[J]. Science, 2008, 322(5909): 1802-1803. [7] VOLMER M, WEBER A Z. Nucleus Formation in Supersaturated Systems[J].Z Phys Chem, 1926, 119: 277-301. [8] FRENKEL J. A general theory of heterophase fluctuations and pretransition phenomena[J]. The Journal of Chemical Physics, 1939, 7(7): 538-547. [9] DE YOREO J J, GILBERT P U, SOMMERDIJK N A, et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments[J]. Science (New York, N Y), 2015, 349(6247): aaa6760. [10] YOREO J D. Crystal nucleation: more than one pathway[J]. Nature Materials, 2013, 12(4): 284. [11] VEKILOV P G. Crystallization via nonclassical pathways volume 1: nucleation, assembly[J]. Observation & Application, 2020, 1358: 19-46. [12] DAVEY R J, ALLEN K, BLAGDEN N, et al. Crystal engineering - nucleation, the key step[J]. CrystEngComm, 2002, 4(47): 257-264. [13] OSTWALD W. Studien über die bildung und umwandlung fester körper[J]. Z Phys Chem, 1897, 22: 289-330. [14] MYSZKA B, SCHÜβLER M, HURLE K, et al. Phase-specific bioactivity and altered Ostwald ripening pathways of calcium carbonate polymorphs in simulated body fluid[J]. RSC Advances, 2019, 9(32): 18232-18244. [15] CRUZ P C, ROCHA F A, FERREIRA A M. Application of selective crystallization methods to isolate the metastable polymorphs of paracetamol: a review[J]. Org Process Res Dev, 2019, 23(12): 2592-2607. [16] VOLMER M. Kinetic der phasenbildung[M]. Leipzig: Steinkopff, 1939. [17] GIBBS J W. Thermodynamics[M]. Vol. Ⅰ: New Haven: Yale University Press,1906. [18] KASHCHIEV D. Nucleation: basic theory with applications[M]. Oxford: Butterworth-Heinemann, 2000. [19] MULLIN J W. Crystallization[M]. 4th ed. Oxford: Butterworth-Heinemann, 2001. [20] HAMMOND R B, PENCHEVA K, ROBERTS K J, et al. Quantifying solubility enhancement due to particle size reduction and crystal habit modification: case study of acetyl salicylic acid[J]. Journal of Pharmaceutical Sciences, 2007, 96(8): 1967-1973. [21] SULLIVAN R A, DAVEY R J, SADIQ G, et al. Revealing the roles of desolvation and molecular self-assembly in crystal nucleation from solution: benzoic and p-aminobenzoic acids[J]. Crystal Growth & Design, 2014, 14(5): 2689-2696. [22] TER HORST J H, KRAMER H J M, JANSENS P J. A new molecular modeling approach to predict concomitant nucleation of polymorphs[J]. Crystal Growth & Design, 2002, 2(5): 351-356. [23] YU L. Nucleation of one polymorph by another[J]. Journal of the American Chemical Society, 2003, 125(21): 6380-6381. [24] ZHU L, WANG L Y, SHA Z L, et al. Interplay between thermodynamics and kinetics on polymorphic appearance in the solution crystallization of an enantiotropic system, gestodene[J]. Crystal Growth & Design, 2017, 17(9): 4582-4595. [25] XU S J, CHEN Y F, GONG J B, et al. Interplay between kinetics and thermodynamics on the probability nucleation rate of a urea-water crystallization system[J]. Crystal Growth & Design, 2018, 18(4): 2305-2315. [26] DAVEY R J, SCHROEDER S L M, TER HORST J H. Nucleation of organic crystals—a molecular perspective[J]. Angewandte Chemie International Edition, 2013, 52(8): 2166-2179. [27] GEBAUER D, CÖLFEN H. Prenucleation clusters and non-classical nucleation[J]. Nano Today, 2011, 6(6): 564-584. [28] WILLIAMS-SETON L, DAVEY R J, LIEBERMAN H F. Solution chemistry and twinning in saccharin crystals: a combined probe for the structure and functionality of the crystal fluid interface[J]. Journal of the American Chemical Society, 1999, 121(19): 4563-4567. [29] MACGILLIVRAY L R, ZAWOROTKO M J. Crystal and molecular structure of 2, 6-dihydroxybenzoic acid[J]. Journal of Chemical Crystallography, 1994, 24(10): 703-705. [30] GDANIEC M, GILSKI M, DENISOV G S. Γ-Resorcylic acid, its monohydrate and its pyridinium complex[J]. Acta Crystallographica Section C Crystal Structure Communications, 1994, 50(10): 1622-1626. [31] CRUZ-CABEZA A J, DAVEY R J, SACHITHANANTHAN S S, et al. Aromatic stacking-a key step in nucleation[J]. Chemical Communications, 2017, 53(56): 7905-7908. [32] GRACIN S, FISCHER A. Redetermination of the β-polymorph of p-amino-benzoic acid[J]. Acta Crystallographica Section E, 2005, 61(5): o1242-o1244. [33] CRUZ-CABEZA A J, TAYLOR E, SUGDEN I J, et al. Can solvated intermediates inform us about nucleation pathways? The case of β-pABA[J]. CrystEngComm, 2020, 22(43): 7447-7459. [34] BLACK J F B, CARDEW P T, CRUZ-CABEZA A J, et al. Crystal nucleation and growth in a polymorphic system: Ostwald’s rule, p-aminobenzoic acid and nucleation transition states[J]. CrystEngComm, 2018, 20(6): 768-776. [35] XIAO Y, TANG S K, HAO H X, et al. Quantifying the inherent uncertainty associated with nucleation rates estimated from induction time data measured in small volumes[J]. Crystal Growth & Design, 2017, 17(5): 2852-2863. [36] MATTEI A, LI T L. Polymorph formation and nucleation mechanism of tolfenamic acid in solution: an investigation of pre-nucleation solute association[J]. Pharmaceutical Research, 2012, 29(2): 460-470. [37] DU W, CRUZ-CABEZA A J, WOUTERSEN S, et al. Can the study of self-assembly in solution lead to a good model for the nucleation pathway? The case of tolfenamic acid[J]. Chem Science, 2015, 6: 3515-3524. [38] BACK K R, DAVEY R J, GRECU T, et al. Molecular conformation and crystallization: the case of ethenzamide[J]. Crystal Growth & Design, 2012, 12(12): 6110-6117. [39] DAVEY R J, DENT G, MUGHAL R K, et al. Concerning the relationship between structural and growth synthons in crystal nucleation: solution and crystal chemistry of carboxylic acids as revealed through IR spectroscopy[J]. Crystal Growth & Design, 2006, 6(8): 1788-1796. [40] SU Y, XU J, SHI Q, et al. Polymorphism of griseofulvin: concomitant crystallization from the melt and a single crystal structure of a metastable polymorph with anomalously large thermal expansion[J]. Chemical Communications, 2018, 54: 358-361. [41] LI X Z, OU X, RONG H W, et al. The twelfth solved structure of ROY: single crystals of Y04 grown from melt microdroplets[J]. Crystal Growth & Design, 2020, 20(11): 7093-7097. [42] YAO C L, GUZEI I A, JIN Y D, et al. Polymorphism of piroxicam: new polymorphs by melt crystallization and crystal structure prediction[J]. Crystal Growth & Design, 2020, 20(12): 7874-7881. [43] HUANG C B, CHEN Z X, GUI Y, et al. Crystal nucleation rates in glass-forming molecular liquids: D-sorbitol, D-arabitol, D-xylitol, and glycerol[J]. The Journal of Chemical Physics, 2018, 149(5): 054503. [44] TURNBULL D, FISHER J C. Rate of nucleation in condensed systems[J]. The Journal of Chemical Physics, 1949, 17: 71. [45] FOKIN V M, ZANOTTO E D, YURITSYN N S, et al. Homogeneous crystal nucleation in silicate glasses: a 40 years perspective[J]. Journal of Non-Crystalline Solids, 2006, 352(26/27): 2681-2714. [46] SOSSO G C, CHEN J, COX S J, et al. Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations[J]. Chemical Reviews, 2016, 116(12): 7078-7116. [47] ZHANG J, LIU Z Y, WU H M, et al. Effect of polymeric excipients on nucleation and crystal growth kinetics of amorphous fluconazole[J]. Biomaterials Science, 2021. DOI:10.1039/d1bm00104c. [48] STOICA C, TINNEMANS P, MEEKES H, et al. Epitaxial 2D nucleation of metastable polymorphs: a 2D version of ostwald's rule of stages[J]. Crystal Growth & Design, 2005, 5(3): 975-981. [49] DAVEY R J, BLAGDEN N, RIGHINI S, et al. Nucleation control in solution mediated polymorphic phase transformations: the case of 2, 6-dihydroxybenzoic acid[J]. The Journal of Physical Chemistry B, 2002, 106(8): 1954-1959. [50] FERRARI E S, DAVEY R J. Solution-mediated transformation of α to β l-glutamic acid: rate enhancement due to secondary nucleation[J]. Crystal Growth & Design, 2004, 4(5): 1061-1068. [51] CASHELL C, CORCORAN D, HODNETT B K. Secondary nucleation of the β-polymorph of l-glutamic acid on the surface of α-form crystals[J]. Chemical Communications, 2003(3): 374-375. [52] TAO J, YU L. Kinetics of cross-nucleation between polymorphs[J]. The Journal of Physical Chemistry B, 2006, 110(14): 7098-7101. [53] SUN Y, XI H M, CHEN S, et al. Crystallization near glass transition: transition from diffusion-controlled to diffusionless crystal growth studied with seven polymorphs[J]. The Journal of Physical Chemistry B, 2008, 112(18): 5594-5601. [54] SUN Y, XI H M, EDIGER M D, et al. Diffusionless crystal growth from glass has precursor in equilibrium liquid[J]. The Journal of Physical Chemistry B, 2008, 112(3): 661-664. [55] SUN Y, XI H M, EDIGER M D, et al. Diffusion-controlled and “diffusionless” crystal growth near the glass transition temperature: relation between liquid dynamics and growth kinetics of seven ROY polymorphs[J]. The Journal of Chemical Physics, 2009, 131(7): 074506. [56] HIKIMA T, ADACHI Y, HANAYA M, et al. Determination of potentially homogeneous-nucleation-based crystallization in o-terphenyl and an interpretation of the nucleation-enhancement mechanism[J]. Physical Review B, Condensed Matter, 1995, 52(6): 3900-3908. [57] KONISHI T, TANAKA H. Possible origin of enhanced crystal growth in a glass[J]. Physical Review B, 2007, 76(22): 220201. [58] ZHU L, WONG L, YU L. Surface-enhanced crystallization of amorphous nifedipine[J]. Molecular Pharmaceutics, 2008, 5(6): 921-926. [59] HUANG C B, RUAN S G, CAI T, et al. Fast surface diffusion and crystallization of amorphous griseofulvin[J]. The Journal of Physical Chemistry B, 2017, 121(40): 9463-9468. [60] WU T, SUN Y, LI N, et al. Inhibiting surface crystallization of amorphous indomethacin by nanocoating[J]. Langmuir, 2007, 23(9): 5148-5153. [61] TEERAKAPIBAL R, GUI Y, YU L. Gelatin nano-coating for inhibiting surface crystallization of amorphous drugs[J]. Pharmaceutical Research, 2018, 35(1): 1-7. [62] LI Y H, YU J G, HU S Y, et al. Polymer nanocoating of amorphous drugs for improving stability, dissolution, powder flow, and tabletability: the case of chitosan-coated indomethacin[J]. Molecular Pharmaceutics, 2019, 16(3): 1305-1311. [63] YAO X, HUANG C B, BENSON E G, et al. Effect of polymers on crystallization in glass-forming molecular liquids: equal suppression of nucleation and growth and master curve for prediction[J]. Crystal Growth & Design, 2020, 20(1): 237-244. [64] PAN W C, KOLOMEISKY A B, VEKILOV P G. Nucleation of ordered solid phases of proteins via a disordered high-density state: phenomenological approach[J]. The Journal of Chemical Physics, 2005, 122(17): 174905. [65] VEKILOV P G. Nucleation[J]. Crystal Growth & Design, 2010, 4: 671-685. [66] VEKILOV P G. The two-step mechanism of nucleation of crystals in solution[J]. Nanoscale, 2010, 2(11): 2346. [67] SUN X Y, GARETZ B A, MYERSON A S. Polarization switching of crystal structure in the nonphotochemical laser-induced nucleation of supersaturated aqueous l-histidine[J]. Crystal Growth & Design, 2008, 8(5): 1720-1722. [68] CHATTOPADHYAY S, ERDEMIR D, EVANS J M B, et al. SAXS study of the nucleation of glycine crystals from a supersaturated solution[J]. Crystal Growth & Design, 2005, 5(2): 523-527. [69] ROSS F M. Opportunities and challenges in liquid cell electron microscopy[J]. Science, 2015, 350(6267): 9886. [70] DE YOREO J J, CHUNG S, FRIDDLE R W. In situ atomic force microscopy as a tool for investigating interactions and assembly dynamics in biomolecular and biomineral systems[J]. Advanced Functional Materials, 2013, 23(20): 2525-2538. [71] WARD M D. Snapshots of crystal growth[J]. Science, 2007, 318(5855): 1345e. [72] NIELSEN M H, ALONI S, DE YOREO J J. In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways[J]. Science, 2014, 345(6201): 1158-1162. [73] DEY A, BOMANS P H, MÜLLER F A, et al. The role of prenucleation clusters in surface-induced calcium phosphate crystallization[J]. Nature Materials, 2010, 9(12): 1010-1014. [74] LUPULESCU A I, RIMER J D. In situ imaging of silicalite-1 surface growth reveals the mechanism of crystallization[J]. Science, 2014, 344(6185): 729-732. [75] LOH N D, SEN S, BOSMAN M, et al. Multistep nucleation of nanocrystals in aqueous solution[J]. Nature Chemistry, 2017, 9(1): 77-82. [76] WANG L F, CHEN J, COX S, et al. Microscopic kinetics pathway of salt crystallization in graphene nanocapillaries[J]. Physical Review Letters, 2021, 126(13): 136001. [77] JIANG Y, KELLERMEIER M, GEBAUER D, et al. Growth of organic crystals via attachment and transformation of nanoscopic precursors[J]. Nature Communications, 2017, 8(1): 1-7. [78] TSARFATI Y, ROSENNE S, WEISSMAN H, et al. Crystallization of organic molecules: nonclassical mechanism revealed by direct imaging[J]. ACS Central Science, 2018, 4(8): 1031-1036. [79] JEHANNIN M, RAO A, CÖLFEN H. New horizons of nonclassical crystallization[J]. Journal of the American Chemical Society, 2019, 141(26): 10120-10136. [80] SONG M, ZHOU G, LU N, et al. Oriented attachment induces fivefold twins by forming and decomposing high-energy grain boundaries[J]. Science, 2020, 367(6473): 40-45. [81] ZHANG X, HE Y, SUSHKO M L, et al. Direction-specific van der Waals attraction between rutile TiO2 nanocrystals[J]. Science, 2017, 356(6336): 434-437. [82] ZHANG X, SHEN Z, LIU J, et al. Direction-specific interaction forces underlying zinc oxide crystal growth by oriented attachment[J]. Nature Communications, 2017, 8(1): 1-8. [83] VORONTSOVA M A, MAES D, VEKILOV P G. Recent advances in the understanding of two-step nucleation of protein crystals[J]. Faraday Discussions, 2015, 179: 27-40. [84] LIU Z M, ZHANG Z S, WANG Z M, et al. Shape-preserving amorphous-to-crystalline transformation of CaCO3 revealed by in situ TEM[J]. PNAS, 2020, 117(7): 3397-3404. [85] LIU Z, SHAO C, JIN B, et al. Crosslinking ionic oligomers as conformable precursors to calcium carbonate[J]. Nature, 2019, 574(7778): 394-398. [86] GEBAUER D, VÖLKEL A, CÖLFEN H. Stable prenucleation calcium carbonate clusters[J]. Science, 2008, 322(5909): 1819-1822. [87] ZACCARO J, MATIC J, MYERSON A S, et al. Nonphotochemical, laser-induced nucleation of supersaturated aqueous glycine produces unexpected γ-polymorph[J]. Crystal Growth & Design, 2001, 1(1): 5-8. [88] COOKMAN J, HAMILTON V, HALL S R, et al. Non-classical crystallisation pathway directly observed for a pharmaceutical crystal via liquid phase electron microscopy[J]. Scientific Reports, 2020, 10(1): 1-10. [89] WIEDENBECK E, KOVERMANN M, GEBAUER D, et al. Liquid metastable precursors of ibuprofen as aqueous nucleation intermediates[J]. Angewandte Chemie International Edition, 2019, 58(52): 19103-19109. [90] TRINH T T H, KHUU C Q, WOLF S E, et al. The multiple stages towards crystal formation of L-glutamic acid[J]. Journal of Crystal Growth, 2020, 544: 125727. [91] FULTON B, GOA K L. Olanzapine[J]. Drugs, 1997, 53(2): 281-298. [92] WARZECHA M, GUO R, M BHARDWAJ R, et al. Direct observation of templated two-step nucleation mechanism during olanzapine hydrate formation[J]. Crystal Growth & Design, 2017, 17(12): 6382-6393. [93] WARZECHA M, SAFARI M S, FLORENCE A J, et al. Mesoscopic solute-rich clusters in olanzapine solutions[J]. Crystal Growth & Design, 2017, 17(12): 6668-6676. [94] BURTON W K, CABRERA N, FRANK F C. The growth of crystals and equilibrium structure of their surfaces[J]. Philos Trans R Soc Lond A, 1951, 243(866): 299-360. [95] WARZECHA M, VERMA L, JOHNSTON B F, et al. Olanzapine crystal symmetry originates in preformed centrosymmetric solute dimers[J]. Nature Chemistry, 2020, 12(10): 914-920. |