人工晶体学报 ›› 2021, Vol. 50 ›› Issue (7): 1234-1247.
王兆宏1, 罗怡坤1, 楚杨阳2
收稿日期:
2021-04-30
出版日期:
2021-07-15
发布日期:
2021-08-16
作者简介:
王兆宏(1976—),女,黑龙江省人,博士,教授。E-mail:zhwang@mail.xjtu.edu.cn
WANG Zhaohong1, LUO Yikun1, CHU Yangyang2
Received:
2021-04-30
Online:
2021-07-15
Published:
2021-08-16
摘要: 声学超构材料作为一种新型的人工结构材料,拥有天然材料所不具备的超常物理特性,比如:负质量、负刚度等。声学超材料通过对其声学特性参数的研究和控制可以实现声隐身、波束控制等功能。与传统声学材料相比,声学超材料具有设计性强、拓展性强等优点,可以突破传统声学材料的物理极限,为小尺寸、轻量化结构解决低频减震降噪、低频宽带声波控制等瓶颈问题提供新思路。仿生学是利用生物学原理发展起来的新兴学科。将仿生学与声学超材料相结合,国内外学者开展了大量的研究工作,尤其在空气动力学及流体动力学降噪方面取得了卓越的研究成果。本文简要回顾过去几十年仿生声学超材料的研究进展,并介绍了相关的代表性工作,期望未来仿生声学超材料能够在低频声波控制、水下应用等方面发挥更大的作用和优势。
中图分类号:
王兆宏, 罗怡坤, 楚杨阳. 仿生声学超材料的声波控制及水下应用研究进展[J]. 人工晶体学报, 2021, 50(7): 1234-1247.
WANG Zhaohong, LUO Yikun, CHU Yangyang. Review of Acoustic Control and Underwater Application of Bionic Acoustic Metamaterials[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(7): 1234-1247.
[1] LU Y X. Significance and progress of bionics[J]. Journal of Bionic Engineering, 2004, 1(1): 1-3. [2] BALL P.Life’s lessons in design[J]. Nature, 2001, 409(6818): 413-416. [3] 乔渭阳,仝 帆,陈伟杰,等.仿生学气动噪声控制研究的历史、现状和进展[J].空气动力学学报,2018,36(1):98-121. QIAO W Y, TONG F, CHEN W J, et al. Review on aerodynamic noise reduction with bionic configuration[J]. Acta Aerodynamica Sinica, 2018, 36(1): 98-121(in Chinese). [4] HAN J K, HUI Z, TIAN F B, et al. Review on bio-inspired flight systems and bionic aerodynamics[J]. Chinese Journal of Aeronautics, 2021, 34(7): 170-186. [5] RAGHUNATHAN R S, KIM H D, SETOGUCHI T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences, 2002, 38(6/7): 469-514. [6] 胡华涛.高速列车仿生非光滑表面减阻特性及其对噪声影响研究[D].南昌:华东交通大学,2020. HU H T. Study on drag reduction characteristics of bionic non-smooth surface of high-speed train and its impact on noise[D]. Nanchang: East China Jiaotong University, 2020(in Chinese). [7] CRIGHTOND G. Basic principles of aerodynamic noise generation[J]. Progress in Aerospace Sciences, 1975, 16(1): 31-96. [8] 任露泉,孙少明,徐成宇.鸮翼前缘非光滑形态消声降噪机理[J].吉林大学学报(工学版),2008,38(S1):126-131. REN L Q, SUN S M, XU C Y. Noise reduction mechanism of non-smooth leading edge of owl wing[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(S1): 126-131(in Chinese). [9] 孙少明.风机气动噪声控制耦合仿生研究[D].长春:吉林大学,2008. SUN S M. Coupling bionic research on the aerodynamic noise controlling of aerodynamic turbine[D]. Changchun: Jilin University, 2008(in Chinese). [10] HOWE M S. Aerodynamic noise of a serrated trailing edge[J]. Journal of Fluids and Structures, 1991, 5(1): 33-45. [11] HOWE M S. Noise produced by a sawtooth trailing edge[J]. The Journal of the Acoustical Society of America, 1991, 90(1): 482-487. [12] KROEGER R, GRUSHKA H D, HELVEY T C. Low speed aerodynamics for ultra-quiet flight[J]. University of Tennessee Space Institute, 1972, 90105-2. [13] BACHMANN T, KLÄN S, BAUMGARTNER W, et al. Morphometric characterisation of wing feathers of the barn owl Tyto alba pratincola and the pigeon Columba livia[J]. Frontiers in Zoology, 2007, 4(1): 1-15. [14] SARRADJ E, FRITZSCHE C, GEYER T. Silent owl flight: birdflyover noise measurements[J]. AIAA Journal, 2011, 49(4): 769-779. [15] JOHNSON C L, REYNOLDS R T. Responses of Mexican spotted owls to low-flying military jet aircraft[R]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2002. [16] CARNEAL J P, FULLER C R. An analytical and experimental investigation of active structural acoustic control of noise transmission through double panel systems[J]. Journal of Sound and Vibration, 2004, 272(3/4/5): 749-771. [17] 孙少明,任露泉,徐成宇.长耳鸮皮肤和覆羽耦合吸声降噪特性研究[J].噪声与振动控制,2008,28(3):119-123. SUN S M, REN L Q, XU C Y. Research oncoupling sound absorption property of owl skin and feather[J]. Noise and Vibration Control, 2008, 28(3): 119-123(in Chinese). [18] 陈 坤,刘庆平,廖庚华,等.利用雕鸮羽毛的消音特性降低小型轴流风机的气动噪声[J].吉林大学学报(工学版),2012,42(1):79-84. CHEN K, LIU Q P, LIAO G H, et al. Aerodynamic noise reduction of small axial fan using hush characteristics of eagle owl feather[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(1): 79-84(in Chinese). [19] 王 雷,刘小民,刘 刚,等.轴流风机仿生耦合叶片降噪机理研究[J].西安交通大学学报,2020,54(11):81-90. WANG L, LIU X M, LIU G, et al. Noise reduction mechanism of bionic coupled blades of axial flow fan[J]. Journal of Xi’an Jiaotong University, 2020, 54(11): 81-90(in Chinese). [20] LI D, LIU X, HU F, et al. Effect of trailing-edge serrations on noise reduction in a coupled bionic aerofoil inspired by barn owls[J]. Bioinspiration & Biomimetics, 2019, 15(1): 016009. [21] ZHOU P, LIU Q, ZHONG S Y, et al. A study of the effect of serration shape and flexibility on trailing edge noise[J]. Physics of Fluids, 2020, 32(12): 127114. [22] HASHEMINEJAD S M, CHONG T P, LACAGNINA G, et al. On the manipulation of flow and acoustic fields of a blunt trailing edge aerofoil by serrated leading edges[J]. The Journal of the Acoustical Society of America, 2020, 147(6): 3932-3947. [23] POLACSEK C, CADER A, BUSZYK M, et al. Aeroacoustic design and broadband noise predictions of a fan stage with serrated outlet guide vanes[J]. Physics of Fluids, 2020, 32(10): 107107. [24] HASHEMINASAB S M, KARIMIAN S M H, NOORI S, et al. Experimental investigation of the wake dynamics for a NACA0012 airfoil with a cut-in serrated trailing-edge[J]. Physics of Fluids, 2021, 33(5): 055122. [25] SZÖKE M, FISCALETTI D, AZARPEYVAND M. Uniform flow injection into a turbulent boundary layer for trailing edge noise reduction[J]. Physics of Fluids, 2020, 32(8): 085104. [26] SHI Y J,KOLLMANN W. Improved delayed detached eddy simulation of a porous wavy trailing edge[J]. Physics of Fluids, 2021, 33(5): 055128. [27] CELIK A, BOWEN J L, AZARPEYVAND M. Effect of trailing-edge bevel on the aeroacoustics of a flat-plate[J]. Physics of Fluids, 2020, 32(10): 105116. [28] AVALLONE F,PRÖBSTING S, RAGNI D. Three-dimensional flow field over a trailing-edge serration and implications on broadband noise[J]. Physics of Fluids, 2016, 28(11): 117101. [29] XU K B, QIAO W Y. An experimental investigation on the near-field turbulence and noise for an airfoil with trailing-edge serrations[C]//San Francisco, California. Acoustical Society of America, 2014. [30] XU K B, QIAO W Y, JI L, et al. An experimental investigation on the near-field turbulence for an airfoil with trailing-edge serrations at different angles of attack[C]//Providence, Rhode Island. Acoustical Society of America, 2014. [31] HUI Z, ZHANG Y, CHEN G. Tip-vortex flow characteristics investigation of a novel bird-like morphing discrete wing structure[J]. Physics of Fluids, 2020, 32(3): 035112. [32] KAMLIYA JAWAHAR H, MELONI S, CAMUSSI R, et al. Intermittent and stochastic characteristics of slat tones[J]. Physics of Fluids, 2021, 33(2): 025120. [33] FISH F E, BATTLE J M. Hydrodynamic design of the humpback whale flipper[J]. Journal of Morphology, 1995, 225(1): 51-60. [34] WANG L, LIU X M, LI D. Noise reduction mechanism of airfoils with leading-edge serrations and surface ridges inspired by owl wings[J]. Physics of Fluids, 2021, 33(1): 015123. [35] CLAIR V, POLACSEK C, LE GARREC T, et al. Experimental and numerical investigation of turbulence-airfoil noise reduction using wavy edges[J]. AIAA Journal, 2013, 51(11): 2695-2713. [36] NARAYANAN S, CHAITANYA P, HAERI S, et al. Airfoil noise reductions through leading edge serrations[J]. Physics of Fluids, 2015, 27(2): 025109. [37] FISH F E, WEBER P W, MURRAY M M, et al. Marineapplications of the biomimetic humpback whale flipper[J]. Marine Technology Society Journal, 2011, 45(4): 198-207. [38] LONGHOUSE R E. Vortex shedding noise of low tip speed, axialflow fans[J]. Journal of Sound and Vibration, 1977, 53(1): 25-46. [39] HANSEN K, KELSO R, DOOLAN C. Reduction of flow induced tonal noise through leading edge tubercle modifications[C]//16th AIAA/CEAS Aeroacoustics Conference. 07 June 2010 - 09 June 2010, Stockholm, Sweden. Reston, Virginia: AIAA, 2010. [40] POLACSEK C, REBOUL G, CLAIR V, et al. Turbulence-airfoil interaction noise reductio nusing wavy leading edge: an experimental and numerical study[C]. Intel-Noise and Noise-Con Congress and Conference, 2011. [41] GRUBER M, JOSEPH P, POLACSEK C, et al. Noise reduction using combined trailing edge and leading edge serrations in a tandem airfoil experiment[C]//18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). 04 June 2012-06 June 2012, Colorado Springs, Co. Reston, Virginia: AIAA, 2012. [42] LAUA S H, KIM J W. The effects of wavy leading edges on airfoil-gust interaction noise[C]//19th AIAA/CEAS Aeroacoustics Conference. May 27-29, 2013, Berlin, Germany. Reston, Virginia: AIAA, 2013. [43] LAUA S H, HAERI S, KIM J W. The effect of wavy leading edges on aerofoil-gust interaction noise[J]. Journal of Sound and Vibration, 2013, 332(24): 6234-6253. [44] NARAYANAN S, JOSEPH P, HAERI S, et al. Noise reduction studies from the leading edge of serrated flat plates[C]//20th AIAA/CEAS Aeroacoustics Conference. 16-20 June 2014, Atlanta, GA. Reston, Virginia: AIAA, 2014. [45] HAERI S, KIM J W, NARAYANAN S, et al. 3D calculations of aerofoil-turbulence interaction noise and the effect of wavy leading edges[C]∥20th AIAA/CEAS Aeroacoustics Conference. 16-20 June 2014, Atlanta, GA. Reston, Virginia: AIAA, 2014. [46] MATHEWS J, PEAKE N. Noise generation by turbulence interacting with an aerofoil with a serrated leading edge[C]∥21 st AIAA/CEAS Aeroacoustics Conference. 22-26 June 2015, Dallas, TX. Reston, Virginia: AIAA, 2015. [47] CHONG T P, VATHYLAKIS A, MCEWEN A, et al. Aeroacoustic and aerodynamic performances of an aerofoil subjected to sinusoidal leading edges[C]∥21 st AIAA/CEAS Aeroacoustics Conference. 22-26 June 2015, Dallas, TX. Reston, Virginia: AIAA, 2015. [48] CHEN W J, QIAO W Y, WANG X N, et al. An experimental and numerical investigation of airfoil instability noise with leading edge serrations[C]∥22nd AIAA/CEAS Aeroacoustics Conference. 30 May-1 June, 2016, Lyon, France. Reston, Virginia: AIAA, 2016. [49] PARUCHURI C C, NARAYANAN S, JOSEPH P, et al. Leading edge serration geometries for significantly enhanced leading edge noise reductions[C]∥22nd AIAA/CEAS Aeroacoustics Conference. 30 May-1 June, 2016, Lyon, France. Reston, Virginia: AIAA, 2016. [50] TURNER J M,KIM J W. Aeroacoustic source mechanisms of a wavy leading edge undergoing vortical disturbances[J]. Journal of Fluid Mechanics, 2017, 811: 582-611. [51] KIM J W, HAERI S, JOSEPH P F. On the reduction of aerofoil-turbulence interaction noise associated with wavy leading edges[J]. Journal of Fluid Mechanics, 2016, 792: 526-552. [52] LYU B S, AZARPEYVAND M, SINAYOKO S. Noise prediction for serrated leading-edges[C]∥22nd AIAA/CEAS Aeroacoustics Conference. 30 May-1 June, 2016, Lyon, France. Reston, Virginia: AIAA, 2016. [53] AGUILERA F G, GILL J R, ANGLAND D, et al. Wavy leading edge airfoils interacting with anisotropic turbulence[C]∥23rd AIAA/CEAS Aeroacoustics Conference. 5-9 June 2017, Denver, Colorado. Reston, Virginia: AIAA, 2017. [54] VEMURI S S, LIU X, ZANG B, et al. On the use of leading-edge serrations for noise control in a tandem airfoil configuration[J]. Physics of Fluids, 2020, 32(7): 077102. [55] KAMLIYA JAWAHAR H, SHOWKAT ALI S A, AZARPEYVAND M. Serrated slat cusp for high-lift device noise reduction[J]. Physics of Fluids, 2021, 33(1): 015107. [56] LEE K H, YU K,AL BA’BA’A H, et al. Sharkskin-inspired magnetoactive reconfigurable acoustic metamaterials[J]. Research (Washington, D C), 2020, 2020: 4825185. [57] 代 翠,戈志鹏,董 亮,等.离心泵仿生表面减阻降噪特性研究[J].华中科技大学学报(自然科学版),2020,48(9):113-118. DAI C, GE Z P, DONG L, et al. Research on characteristics of drag reduction and noise reduction onⅤ-groove surface of bionic blade of centrifugal pump[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(9): 113-118(in Chinese). [58] LI M, WU J H, YUAN X Y. Wall suction & slip effect of spherical-grooved bionic metasurface for controlling the aerodynamic noise[J]. Applied Acoustics, 2021, 171: 107537. [59] 孙振旭,姚永芳,杨 焱,等.国内高速列车气动噪声研究进展概述[J].空气动力学学报,2018,36(3):385-397. SUN Z X, YAO Y F, YANG Y, et al. Overview of the research progress on aerodynamic noise of high speed trains in China[J]. Acta Aerodynamica Sinica, 2018, 36(3): 385-397(in Chinese). [60] 林 鹏,刘冬雪.城际列车底部结构优化减小气动阻力研究[J].空气动力学学报,2018,36(5):763-773. LIN P, LIU D X. Reduction of aerodynamic drag on intercity railway through car bottom structure optimization[J]. Acta Aerodynamica Sinica, 2018, 36(5): 763-773(in Chinese). [61] 朱海燕,朱志和,邬平波,等.服役工况下高速动车组齿轮箱箱体振动特性分析[J].噪声与振动控制,2021,41(2):15-20+27. ZHU H Y, ZHU Z H, WU P B, et al. Vibration characteristics analysis of high-speed EMU gearbox housings under service conditions[J]. Noise and Vibration Control, 2021, 41(2): 15-20+27(in Chinese). [62] ZHANG L, ZHANG J Y, LI T, et al. Multi-objective aerodynamic optimization design of high-speed train head shape[J]. Journal of Zhejiang University-SCIENCE A, 2017, 18(11): 841-854. [63] 张 亮,张继业,李 田,等.超高速列车流线型头型多目标优化设计[J].机械工程学报,2017,53(2):106-114. ZHANG L, ZHANG J Y, LI T, et al. Multi-objective optimization design of the streamlined head shape of superhigh-speed trains[J]. Journal of Mechanical Engineering, 2017, 53(2): 106-114(in Chinese). [64] SONG X W, LIN P Z, LIU R, et al. Skin friction reduction characteristics of variable ovoid non-smooth surfaces[J]. Journal of Zhejiang University-SCIENCE A, 2017, 18(1): 59-66. [65] 刘海涛,徐志龙.基于仿生非光滑结构的高速列车受电弓杆件减阻降噪研究[J].噪声与振动控制,2018,38(S1):269-272. LIU H T, XU Z L. Study on drag and noise reduction of pantograph rods based on bionic non-smooth structures[J]. Noise and Vibration Control, 2018, 38(S1): 269-272(in Chinese). [66] 朱海燕,胡华涛,尹必超,等.高速列车球窝非光滑表面减阻降噪研究[J].噪声与振动控制,2020,40(6):46-51. ZHU H Y, HU H T, YIN B C, et al. Research on drag and noise reduction of non-smooth surface of ball sockets of high speed trains[J]. Noise and Vibration Control, 2020, 40(6): 46-51(in Chinese). [67] 朱海燕,胡华涛,尹必超.凸包非光滑表面高速列车气动阻力及噪声研究[J].华东交通大学学报,2020,37(4):88-95. ZHU H Y, HU H T, YIN B C. Research on aerodynamic resistance and noise of high-speed train with convex non-smooth surface[J]. Journal of East China Jiaotong University, 2020, 37(4): 88-95(in Chinese). [68] 王洋洋,周劲松,宫 岛,等.高速列车受电弓气动噪声分布特性及仿生降噪研究[J].噪声与振动控制,2018,38(S1):348-352. WANG Y Y,ZHOU J S, GONG D, et al. Study on bionic noise reduction and aerodynamic noise distribution characteristics for high-speed train’s pantographs[J]. Noise and Vibration Control, 2018, 38(S1): 348-352(in Chinese). [69] CHEN X, YANG L. Research on aerodynamic noise reduction with non-smooth surfaces of exterior rearview mirror cover[J]. Advanced Materials Research, 2012, 430/431/432: 1768-1772. [70] DAI C, GE Z P, DONG L, et al. Study on noise characteristics of marine centrifugal pump under different cavitation stages[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2021: 1-15. [71] JIA Z A, LIU F, JIANG X H, et al. Engineering lattice metamaterials for extreme property, programmability, and multifunctionality[J]. Journal of Applied Physics, 2020, 127(15): 150901. [72] GE H, YANG M, MA C, et al. Breaking the barriers: advances in acoustic functional materials[J]. National Science Review, 2018, 5(2): 159-182. [73] WANG Y H, ZHANG C C, REN L Q, et al. Acoustic performance analysis of bionic coupling multi-layer structure[J]. Applied Mechanics and Materials,2013, 461: 22-30. [74] WANG Y H, ZHANG C C, REN L Q, et al. Sound absorption of a new bionic multi-layer absorber[J]. Composite Structures, 2014, 108: 400-408. [75] ZHANG Z G, GAO W, WANG S Z, et al. Flow noise around underwater axisymmetric models with bio-inspired coating[C]//2020 IEEE SENSORS. October 25-28, 2020, Rotterdam, Netherlands. IEEE, 2020: 1-4. [76] MA F Y, WU J H, HUANG M, et al. Cochlear bionic acoustic metamaterials[J]. Applied Physics Letters, 2014, 105(21): 213702. [77] MA F Y, WU J H, HUANG M, et al. Cochlear outer hair cell bio-inspired metamaterial with negative effective parameters[J]. Applied Physics A, 2016, 122(5): 1-8. [78] SONG Z, ZHANG Y, BERGGREN P, et al. Reconstruction of the forehead acoustic properties in an Indo-Pacific humpback dolphin (Sousa chinensis), with investigation on the responses of soft tissue sound velocity to temperature[J]. The Journal of the Acoustical Society of America, 2017, 141(2): 681. [79] CRANFORD T W, MCKENNA M F, SOLDEVILLA M S, et al. Anatomic geometry of sound transmission and reception incuvier's beaked whale (ziphius cavirostris)[J]. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 2008, 291(4): 353-378. [80] KLOEPPER L N, NACHTIGALL P E, DONAHUE M J, et al. Active echolocation beam focusing in the false killer whale, Pseudorca crassidens[J]. The Journal of Experimental Biology, 2012, 215(pt 8): 1306-1312. [81] WISNIEWSKA D M, RATCLIFFE J M, BEEDHOLM K, et al. Range-dependent flexibility in the acoustic field of view of echolocating porpoises (Phocoena phocoena)[J].Elife, 2015, 4: e05651. [82] ZHANG Y, SONG Z C, WANG X Y, et al. Directional acoustic wave manipulation by a porpoise via multiphase forehead structure[J]. Physical Review Applied, 2017, 8(6): 064002. [83] 魏 翀,王先艳,宋忠长,等.基于CT扫描的中华白海豚头部声速分布重建[C]//中国声学学会水声学分会2013年全国水声学学术会议论文集.湛江,2013:38-40. WEI C, WANG X Y, SONG Z C, et al. Sound velocity distribution reconstruction of an indo-pacific humpback dolphins head based on CT scan[C]∥Proceedings of 2013 National Conference on Underwater Acoustics, Society of Acoustics of China. Zhanjiang, 2013: 38-40. [84] ZHANG Y, GAO X W, ZHANG S, et al. A biomimetic projector with high subwavelength directivity based on dolphin biosonar[J]. Applied Physics Letters, 2014, 105(12): 123502. [85] DONG E Q, SONG Z C, ZHANG Y, et al. Bioinspired metagel with broadband tunable impedance matching[J]. Science Advances, 2020, 6(44): abb3641 |
[1] | 孙向洋, 燕群, 郭翔鹰. 单面柱局域共振声子晶体低频带隙特性分析及结构改进研究[J]. 人工晶体学报, 2021, 50(7): 1378-1385. |
[2] | 李竞, 王红赛, 关栋, 张纯, 沈辉. 含谐振单元和弹性支承谐振单元的声子晶体低频禁带特性研究[J]. 人工晶体学报, 2021, 50(1): 7-12. |
[3] | 郭兆枫, 陈传敏, 乔钏熙, 倪园. 超胞声子晶体板的轻量化设计与研究[J]. 人工晶体学报, 2021, 50(1): 13-19. |
[4] | 蒋娟娜;姚宏;赵静波;张帅;贺子厚;陈鑫. 多重开孔式声子晶体隔声特性研究[J]. 人工晶体学报, 2019, 48(3): 379-385. |
[5] | 陈鑫;姚宏;赵静波;张帅;贺子厚. 双局域共振Helmholtz声子晶体带隙研究[J]. 人工晶体学报, 2019, 48(1): 13-17. |
[6] | 张亮;郭辉;王岩松;李雅榕;刘宁宁. 嵌套型C型管声子晶体低频带隙特性研究[J]. 人工晶体学报, 2018, 47(3): 463-469. |
[7] | 王艺;郭辉;吕将;王岩松;刘宁宁. 非均匀局域共振型声子晶体隔声特性研究[J]. 人工晶体学报, 2017, 46(7): 1250-1257. |
[8] | 李泽;许宝才;王建江;赵芳. BaTiO3包覆羰基铁吸波剂的制备及其吸波性能研究[J]. 人工晶体学报, 2016, 45(9): 2240-2245. |
[9] | 祁鹏山;杜军;姜久龙;董亚科;张佳龙. 新型局域共振声子晶体结构的低频带隙特性研究[J]. 人工晶体学报, 2016, 45(4): 1094-1099. |
[10] | 张佳龙;姚宏;杜军;赵静波;董亚科;祁鹏山. 薄膜型声学超材料板结构隔声特性分析[J]. 人工晶体学报, 2016, 45(10): 2549-2555. |
[11] | 靳宝安;王林力;马红霞. LST-92kHz型低频窄带石英晶体滤波器研制[J]. 人工晶体学报, 2007, 36(4): 908-912. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||