[1] SCHULLER J A, BARNARD E S, CAI W S, et al. Plasmonics for extreme light concentration and manipulation[J]. Nature Materials, 2010, 9(3): 193-204. [2] WOOD R W. XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1902, 4(21): 396-402. [3] GARNETT J C M, LARMOR J. Colours in metal glasses and in metallic films[J]. Proceedings of the Royal Society of London, 1904, 73(488-496): 443-445. [4] MIE G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen[J]. Annalen Der Physik, 1908, 330(3): 377-445. [5] PINES D. Collective energy losses in solids[J]. Reviews of Modern Physics, 1956, 28(3): 184-198. [6] RITCHIE R H. Plasma losses by fast electrons in thin films[J]. Physical Review, 1957, 106(5): 874-881. [7] OTTO A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J]. Zeitschrift Für Physik A Hadrons and Nuclei, 1968, 216(4): 398-410. [8] Kretschmann E, Raether H. Radiative decay of non radiative surface plasmons excited by light[J]. Zeitschrift Fur Naturforschung Part A-astrophysik Physik Und Physikalische Chemie, 1968, A23(12): 2135-2136. [9] CUNNINGHAM S L, MARADUDIN A A, WALLIS R F. Effect of a charge layer on the surface-plasmon-polariton dispersion curve[J]. Physical Review B, 1974, 10(8): 3342-3355. [10] DITLBACHER H, KRENN J R, FELIDJ N, et al. Fluorescence imaging of surface plasmon fields[J]. Applied Physics Letters, 2002, 80(3): 404-406. [11] RITCHIE R, ARAKAWA E, COWAN J, et al. Surface-plasmon resonance effect in grating diffraction[J]. Physical Review Letters, 1968, 21(22): 1530-1533. [12] BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830. [13] BARNES, PREIST, KITSON, et al. Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings[J]. Physical Review B, Condensed Matter, 1996, 54(9): 6227-6244. [14] TAN W C, PREIST T W, SAMBLES J R, et al. Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings[J]. Physical Review B, 1999, 59(19): 12661-12666. [15] CHRIST A, TIKHODEEV S G, GIPPIUS N A, et al. Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab[J]. Physical Review Letters, 2003, 91(18): 183901. [16] WANG C Y, SANG Y G, YANG X Y, et al. Engineering giant Rabi splitting via strong coupling between localized and propagating plasmon modes on metal surface lattices: observation of √N scaling rule[J]. Nano Letters, 2021, 21(1): 605-611. [17] WANG B Q, YU P, WANG W H, et al. High-Q plasmonic resonances: fundamentals and applications[J]. Advanced Optical Materials, 2021, 9(7): 2001520. [18] SAAD BIN-ALAM M, RESHEF O, MAMCHUR Y, et al. Ultra-high-Q resonances in plasmonic metasurfaces[J]. Nature Communications, 2021, 12: 974. [19] HUMPHREY A D, MEINZER N, STARKEY T A, et al. Surface lattice resonances in plasmonic arrays of asymmetric disc dimers[J]. ACS Photonics, 2016, 3(4): 634-639. [20] HUMPHREY A D, BARNES W L. Plasmonic surface lattice resonances on arrays of different lattice symmetry[J]. Physical Review B, 2014, 90(7): 075404. [21] RODRIGUEZ S R K, SCHAAFSMA M C, BERRIER A, et al. Collective resonances in plasmonic crystals: size matters[J]. Physica B: Condensed Matter, 2012, 407(20): 4081-4085. [22] FEDOTOV V A, PAPASIMAKIS N, PLUM E, et al. Spectral collapse in ensembles of metamolecules[J]. Physical Review Letters, 2010, 104(22): 223901. [23] LE-VAN Q, ZOETHOUT E, GELUK E J, et al. Enhanced quality factors of surface lattice resonances in plasmonic arrays of nanoparticles[J]. Advanced Optical Materials, 2019, 7(6): 1801451. [24] AUGUIÉ B, BENDAÑA X M, BARNES W L, et al. Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate[J]. Physical Review B, 2010, 82(15): 155447. [25] AUGUIÉ B, BARNES W L. Diffractive coupling in gold nanoparticle arrays and the effect of disorder[J]. Optics Letters, 2009, 34(4): 401-403. [26] KRAVETS V G, KABASHIN A V, BARNES W L, et al. Plasmonic surface lattice resonances: a review of properties and applications[J]. Chemical Reviews, 2018, 118(12): 5912-5951. [27] ZHOU W, ODOM T W. Tunable subradiant lattice plasmons by out-of-plane dipolar interactions[J]. Nature Nanotechnology, 2011, 6(7): 423-427. [28] ZHOU W, HUA Y, HUNTINGTON M D, et al. Delocalized lattice plasmon resonances show dispersive quality factors[J]. The Journal of Physical Chemistry Letters, 2012, 3(10): 1381-1385. [29] KRAVETS V G, SCHEDIN F, GRIGORENKO A N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles[J]. Physical Review Letters, 2008, 101(8): 087403. [30] THACKRAY B D, KRAVETS V G, SCHEDIN F, et al. Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments[J]. ACS Photonics, 2014, 1(11): 1116-1126. [31] VECCHI G, GIANNINI V, GÓMEZ RIVAS J. Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas[J]. Physical Review B, 2009, 80(20): 201401. [32] AZZAM S I, SHALAEV V M, BOLTASSEVA A, et al. Formation of bound states in the continuum in hybrid plasmonic-photonic systems[J]. Physical Review Letters, 2018, 121(25): 253901. [33] CHEN Y J, KOTELES E S, SEYMOUR R J, et al. Surface plasmons on gratings: coupling in the minigap regions[J]. Solid State Communications, 1983, 46(2): 95-99. [34] LIANG Y, KOSHELEV K, ZHANG F C, et al. Bound states in the continuum in anisotropic plasmonic metasurfaces[J]. Nano Letters, 2020, 20(9): 6351-6356. [35] SUN S Y, DING Y F, LI H Z, et al. Tunable plasmonic bound states in the continuum in the visible range[J]. Physical Review B, 2021, 103(4): 045416. [36] XIAO M, ZHANG Z Q, CHAN C T. Surface impedance and bulk band geometric phases in one-dimensional systems[J]. Physical Review X, 2014, 4(2): 021017. [37] SANG Y, WU X, RAJA S S, et al. Broadband multifunctional plasmonic logic gates[J]. Advanced Optical Materials, 2018, 6(13): 1701368. [38] WANG C Y, CHEN H Y, SUN L Y, et al. Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics[J]. Nature Communications, 2015, 6: 7734. [39] HAKALA T K, MOILANEN A J, VÄKEVÄINEN A I, et al. Bose-Einstein condensation in a plasmonic lattice[J]. Nature Physics, 2018, 14(7): 739-744. [40] IMAMOGLU A, RAM R J, PAU S, et al. Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers[J]. Physical Review A, 1996, 53(6): 4250-4253. [41] CARUSOTTO I, CIUTI C. Quantum fluids of light[J]. Reviews of Modern Physics, 2013, 85(1): 299-366. [42] SU R, GHOSH S, WANG J, et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature[J]. Nature Physics, 2020, 16(3): 301-306. [43] ZHOU W, DRIDI M, SUH J Y, et al. Lasing action in strongly coupled plasmonic nanocavity arrays[J]. Nature Nanotechnology, 2013, 8(7): 506-511. [44] HAKALA T K, REKOLA H T, VÄKEVÄINEN A I, et al. Lasing in dark and bright modes of a finite-sized plasmonic lattice[J]. Nat Commun, 2017, 8: 13687. [45] RAMEZANI M, HALPIN A, FERNÁNDEZ-DOMÍNGUEZ A I, et al. Plasmon-exciton-polariton lasing[J]. Optica, 2017, 4(1): 31-37. |