[1] MALDOVAN M. Sound and heat revolutions in phononics[J]. Nature, 2013, 503(7475): 209-217. [2] LIU Z, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736. [3] HAN X K, ZHANG Z. Bandgap design of three-phase phononic crystal by topological optimization[J]. Wave Motion, 2020, 93: 102496. [4] 郭兆枫,陈传敏,乔钏熙,等.超胞声子晶体板的轻量化设计与研究[J].人工晶体学报,2021,50(1):13-19. GUO Z F, CHEN C M, QIAO C X, et al. Lightweight design and research of supercell phononic crystal plate[J]. Journal of Synthetic Crystals, 2021, 50(1): 13-19(in Chinese). [5] 何宇漾.声子晶体结构板件在车内噪声控制中的应用研究[J].噪声与振动控制,2020,40(6):193-197. HE Y Y. Application of phononic crystal plates in vehicle’s noise control[J]. Noise and Vibration Control, 2020, 40(6): 193-197(in Chinese). [6] 李粮余.基于声子晶体理论进行轨道系统减振效果研究[J].铁道工程学报,2020,37(12):64-69. LI L Y. Research on the vibration reduction effect of track system based on phononic crystal theory[J]. Journal of Railway Engineering Society, 2020, 37(12): 64-69(in Chinese). [7] 耿志明,狄 琛,方 轲,等.人工晶体的微结构调控热输运研究[J].人工晶体学报,2020,49(9):1569-1582. GENG Z M, DI C, FANG K, et al. Thermal transport study of engineered synthetic crystal microstructures[J]. Journal of Synthetic Crystals, 2020, 49(9): 1569-1582(in Chinese). [8] HAN X K, ZHANG Z. Acoustic beam controlling in water by the design of phononic crystal[J]. Extreme Mechanics Letters, 2020, 34: 100602. [9] YANG H, ZHANG X, ZHAO D G, et al. The self-collimation effect induced by non-Hermitian acoustic systems[J]. Applied Physics Letters, 2019, 114(13): 133503. [10] PÉREZ-ARJONA I, SÁNCHEZ-MORCILLO V J, REDONDO J, et al. Theoretical prediction of the nondiffractive propagation of sonic waves through periodic acoustic media[J]. Physical Review B, 2007, 75: 014304. [11] PARK J H, MA P S, KIM Y Y. Design of phononic crystals for self-collimation of elastic waves using topology optimization method[J]. Structural and Multidisciplinary Optimization, 2015, 51(6): 1199-1209. [12] LI J, WU F G, ZHONG H L, et al. Acoustic beam splitting in two-dimensional phononic crystals using self-collimation effect[J]. Journal of Applied Physics, 2015, 118(14): 144903. [13] TAN Y X, YU T B, YU M H, et al. Simultaneous beam guides of electromagnetic and acoustic waves in defect-free phoxonic crystals using self-collimation effect[J]. Applied Physics Express, 2019, 12(6): 062015. [14] SHU Y Y, YU M H, YU T B, et al. Design of phoxonic virtual waveguides for both electromagnetic and elastic waves based on the self-collimation effect: an application to enhance acousto-optic interaction[J]. Optics Express, 2020, 28(17): 24813-24819. [15] GUO J C, LI J R, ZHANG Z. Interface design of low-frequency band gap characteristics in stepped hybrid phononic crystals[J]. Applied Acoustics, 2021, 182: 108209. [16] WANG Y Z, PERRAS E, GOLUB M V, et al. Manipulation of the guided wave propagation in multilayered phononic plates by introducing interface delaminations[J]. European Journal of Mechanics - A/Solids, 2021, 88: 104266. [17] GAO N, QU S C, SI L, et al. Broadband topological valley transport of elastic wave in reconfigurable phononic crystal plate[J]. Applied Physics Letters, 2021, 118(6): 063502. [18] YANG S X, PAGE J H, LIU Z Y, et al. Focusing of sound in a 3D phononic crystal[J]. Physical Review Letters, 2004, 93(2): 024301. [19] 张 昭,冀广明,韩星凯.弯折臂格栅结构声子晶体带隙优化[J].人工晶体学报,2018,47(6):1226-1231. ZHANG Z, JI G M, HAN X K. Optimization of band gaps in zig-zag lattice structures phononic crystals[J]. Journal of Synthetic Crystals, 2018, 47(6): 1226-1231(in Chinese). [20] 张 昭,韩星凯,苏开创.基于声子晶体带隙特性的薄板减振设计[J].人工晶体学报,2016,45(4):872-879. ZHANG Z, HAN X K, SU K C. Vibration reduction design of thin plate based on band gap features of phononic crystals[J]. Journal of Synthetic Crystals, 2016, 45(4): 872-879(in Chinese). [21] PATIL G U, MATLACK K H. Wave self-interactions in continuum phononic materials with periodic contact nonlinearity[J]. Wave Motion, 2021, 105: 102763. [22] VAN DEN BOOM S J, VAN KEULEN F, ARAGÓN A M. Fully decoupling geometry from discretization in the Bloch-Floquet finite element analysis of phononic crystals[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 382: 113848. |