[1] 阮永丰,许 强,林 林.蓝绿光波段激光技术与材料的研究进展[J].人工晶体学报,2002,31(3):266-276. RUAN Y F, XU Q, LIN L. Progress in the technology and materials of blue-green lasers[J]. Journal of Synthetic Crystals, 2002, 31(3): 266-276(in Chinese). [2] JIANG D L, YANG Z, LIU G X, et al. A novel 450-nm blue laser system for surgical applications: efficacy of specific laser-tissue interactions in bladder soft tissue[J]. Lasers in Medical Science, 2019, 34(4): 807-813. [3] NAKATSU Y, NAGAO Y, KOZURU K, et al. High-efficiency blue and green laser diodes for laser displays[C]//SPIE OPTO. Proc SPIE 10918, Gallium Nitride Materials and Devices XIV, San Francisco, California, USA. 2019, 1091: 109181D. [4] ZONG Q S, BO Y, GUO C, et al. High brightness narrow-linewidth microsecond pulse green laser by frequency doubling of a master oscillator power amplifier Nd∶YAG laser[J]. Optics & Laser Technology, 2018, 106: 294-298. [5] SCHÖNBECK A, THIES F, SCHNABEL R. 13 dB squeezed vacuum states at 1 550 nm from 12 mW external pump power at 775 nm[J]. Optics Letters, 2018, 43(1): 110-113. [6] POTVIN S, GENEST J. Dual-comb spectroscopy using frequency-doubled combs around 775 nm[J]. Optics Express, 2013, 21(25): 30707-30715. [7] KOBAT D, DURST M E, NISHIMURA N, et al. Deep tissue multiphoton microscopy using longer wavelength excitation[J]. Optics Express, 2009, 17(16): 13354-13364. [8] WALLERAND J P, ROBERTSSON L, MA L S, et al. Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled Yb-doped fibre laser[J]. Metrologia, 2006, 43(3): 294-298. [9] PULLEN M G, CHAPMAN J J, KIELPINSKI D. Efficient generation of >2 W of green light by single-pass frequency doubling in PPMgLN[J]. Applied Optics, 2008, 47(10): 1397-1400. [10] JENSEN O B, HANSEN A K, MÜLLER A, et al. Efficient generation of 3.5 W laser light at 515 nm by frequency doubling a single-frequency high power DBR tapered diode laser[J]. Optics Communications, 2017, 392: 167-170. [11] WANG F Y, ZHU S N, LI K F, et al. Third-harmonic generation in a one-dimensional photonic-crystal-based amorphous nanocavity[J]. Applied Physics Letters, 2006, 88(7): 071102. [12] SEDERBERG S, ELEZZABI A Y. Coherent visible-light-generation enhancement in silicon-based nanoplasmonic waveguides via third-harmonic conversion[J]. Physical Review Letters, 2015, 114(22): 227401. [13] PHILIPPE C, CHEA E, NISHIDA Y, et al. Efficient third harmonic generation of a CW-fibered 1.5 μm laser diode[J]. Applied Physics B, 2016, 122(10): 1-5. [14] BURNS W K, MCELHANON W, GOLDBERG L. Second harmonic generation in field poled, quasi-phase-matched, bulk LiNbO3[J]. IEEE Photonics Technology Letters, 1994, 6(2): 252-254. [15] GU H, LIU H H. Transversely pumped yellow-green laser using color centers in the lithium fluoride crystal at room temperature[J]. Optics Communications, 2002, 201(1/2/3): 113-116. [16] 孙 军,郝永鑫,张 玲,等.铌酸锂晶体及其应用概述[J].人工晶体学报,2020,49(6):947-964. SUN J, HAO Y X, ZHANG L, et al. Brief review of lithium niobate crystal and its applications[J]. Journal of Synthetic Crystals, 2020, 49(6): 947-964(in Chinese). [17] GAYER O, SACKS Z, GALUN E, et al. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3[J]. Applied Physics B, 2008, 91(2): 343-348. [18] MILLER G D, BYER R L, HARRIS S E, et al. Periodically poled lithium niobate: modeling fabrication and nonlinear-optical performance[EB/OL]. 1998. [19] ISHIZUKI H, SHOJI I, TAIRA T. Periodical poling characteristics of congruent MgO∶LiNbO3 crystals at elevated temperature[J]. Applied Physics Letters, 2003, 82(23): 4062-4064. [20] MIZUUCHI K, MORIKAWA A, SUGITA T, et al. Electric-field poling in Mg-doped LiNbO3[J]. Journal of Applied Physics, 2004, 96(11): 6585-6590. [21] NAKAMURA K, KURZ J, PARAMESWARAN K, et al. Periodic poling of magnesium-oxide-doped lithium niobate[J]. Journal of Applied Physics, 2002, 91(7): 4528-4534. |