[1] DING M, CAI X, JIANG H L. Improving MOF stability: approaches and applications[J]. Chemical Science, 2019, 10(44): 10209-10230. [2] JIAO L, SEOW J, SKINNER W S, et al. Metal-organic frameworks: Structures and functional applications[J]. Materials Today, 2019, 27: 43-68. [3] LI B, WEN H, CUI Y, et al. Emerging multifunctional metal-organic framework materials[J]. Advanced Materials, 2016, 28(40): 8819-8860. [4] XUE Y, ZHENG S, XUE H, et al. Metal-organic framework composites and their electrochemical applications[J]. Journal of Materials Chemistry A, 2019, 7(13): 7301-7327. [5] DONG Z P, ZHAO J J, LIU P Y, et al. A metal-organic framework constructed by a viologen-derived ligand: photochromism and discernible detection of volatile amine vapors[J]. New Journal of Chemistry, 2019, 43(23): 9032-9038. [6] HU S, LV L, CHEN S, et al. Zn-MOF-based photoswitchable dyad that exhibits photocontrolled luminescence[J]. Crystal Growth & Design, 2016, 16(12): 6705-6708. [7] LI L, TU Z M, HUA Y, et al. A novel multifunction photochromic metal-organic framework for rapid ultraviolet light detection, amine-selective sensing and inkless and erasable prints[J]. Inorganic Chemistry Frontiers, 2019, 6(11): 3077-3082. [8] LI P, GUO M Y, GAO L L, et al. Photoresponsivity and antibiotic sensing properties of an entangled tris(pyridinium)-based metal-organic framework[J]. Dalton Transactions, 2020, 49(22): 7488-7495. [9] LI P, SUI Q, GUO M Y, et al. Selective chemochromic and chemically-induced photochromic response of a metal-organic framework[J]. Chemical Communications, 2020, 56(44): 5929-5932. [10] LI P, YIN X M, GAO L L, et al. Modulating excitation energy of luminescent metal-organic frameworks for detection of Cr(Ⅵ) in water[J]. ACS Applied Nano Materials, 2019, 2(7): 4646-4654. [11] LI P, ZHOU L J, YANG N N, et al. Metal-organic frameworks with extended viologen units: metal-dependent photochromism, photomodulable fluorescence, and sensing properties[J]. Crystal Growth & Design, 2018, 18(11): 7191-7198. [12] LI X N, LI L, WANG H Y, et al. A novel photochromic metal-organic framework with good anion and amine sensing[J]. Dalton Transactions, 2019, 48(19): 6558-6563. [13] LI Z, CAI W, YANG X, et al. Cationic metal-organic frameworks based on linear zwitterionic ligands for Cr2O72- and ammonia sensing[J]. Crystal Growth & Design, 2020, 20(5): 3466-3473. [14] LIU J J. Multi-responsive host-guest MOFs derived from ethyl viologen cations[J]. Dyes and Pigments, 2019, 163: 496-501. [15] LIU J J, QUE Q T, LIU D, et al. A multifunctional photochromic metal-organic framework with Lewis acid sites for selective amine and anion sensing[J]. Cryst Eng Comm, 2020, 22(24): 4124-4129. [16] LIU J J, XIA S B, LIU Y, et al. The influence of anions on electron-transfer photochromism of bipyridinium-derived metal-organic materials[J]. Crystal Growth & Design, 2020, 20(3): 1729-1737. [17] LIU Y S, LUO Y H, LI L, et al. An electron-transfer photochromic crystalline MOF accompanying photoswitchable luminescence in a host-guest system[J]. Photochem Photobiol Sci, 2017, 16(5): 753-758. [18] SHI Q, WU S Y, QIU X T, et al. Three viologen-derived Zn-organic materials: photochromism, photomodulated fluorescence, and inkless and erasable prints[J]. Dalton Transactions, 2019, 48(3): 954-963. [19] SUI Q, LI P, YANG N N, et al. Differentiable detection of volatile amines with a viologen-derived metal-organic material[J]. ACS Appl Mater Interfaces, 2018, 10(13): 11056-11062. [20] WU J, LUO L, HAN Y, et al. Ionothermal synthesis of a photochromic inorganic-organic complex for colorimetric and portable UV index indication and UVB detection[J]. RSC Advances, 2020, 10(68): 41720-41726. [21] XU H L, ZENG X S, LI J, et al. The impact of metal ions on photoinduced electron-transfer properties: four photochromic metal-organic frameworks based on a naphthalenediimide chromophore[J]. Cryst Eng Comm, 2018, 20(17): 2430-2439. [22] YANG N N, SUN W, XI F G, et al. Postsynthetic N-methylation making a metal-organic framework responsive to alkylamines[J]. Chemical Communications, 2017, 53(10): 1747-1750. [23] ZHANG C, SHI H, YAN Y, et al. A zwitterionic ligand-based water-stable metal-organic framework showing photochromic and Cr(Ⅵ) removal properties[J]. Dalton Transactions, 2020, 49(30): 10613-10620. [24] ZHANG C, SUN L, YAN Y, et al. A novel photo- and hydrochromic europium metal-organic framework with good anion sensing properties[J]. Journal of Materials Chemistry C, 2017, 5(35): 8999-9004. [25] ZHANG J, ZENG Y, LU H, et al. Two zinc-viologen interpenetrating frameworks with straight and offset stacking modes respectively showing different photo/thermal responsive characters[J]. Crystal Growth & Design, 2020, 20(4): 2617-2622. [26] ZHAO Y P, LI Y, CUI C Y, et al. Tetrazole-viologen-based flexible microporous metal-organic framework with high CO2 selective uptake[J]. Inorganic Chemistry, 2016, 55(15): 7335-40. [27] KRENO L E, LEONG K, FARHA O K, et al. Metal-organic framework materials as chemical sensors[J]. Chemistry Reviews, 2012, 112(2): 1105-25. [28] CHEN Y Z, ZHANG R, JIAO L, et al. Metal-organic framework-derived porous materials for catalysis[J]. Coordination Chemistry Reviews, 2018, 362: 1-23. [29] MAINA J W, POZO-GONZALO C, KONG L, et al. Metal organic framework based catalysts for CO2 conversion[J]. Materials Horizons, 2017, 4(3): 345-361. [30] XIE W, YIN T, CHEN Y L, et al. Capture and “self-release” of circulating tumor cells using metal-organic framework materials[J]. Nanoscale, 2019, 11 (17): 8293-8303. [31] LI J, WANG X, ZHAO G, et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions[J]. Chemical Society Reviews, 2018, 47(7): 2322-2356. [32] ZHAO X, WANG Y, LI D S, et al. Metal-organic frameworks for separation[J]. Advanced Materials, 2018, 30(37): 1705189.1-1705189.34. [33] ZHANG B, ZHANG J, LIU C, et al. Solvent determines the formation and properties of metal-organic frameworks[J]. RSC Advances, 2015, 5(47): 37691-37696. [34] FENG X, JIA C, WANG J, et al. Efficient vapor-assisted aging synthesis of functional and highly crystalline MOFs from CuO and rare earth sesquioxides/carbonates[J]. Green Chemistry, 2015, 17(7): 3740-3745. [35] AITCHISON H, LU H, ORTIZ DE LA MORENA R, et al. Self-assembly of 1,3,5-benzenetribenzoic acid on Ag and Cu at the liquid/solid interface[J]. Physical Chemistry Chemical Physics, 2018, 20(4): 2731-2740. [36] SARKAR A, ADHIKARY, A, MANDAL A, et al. Zn-BTC MOF as an adsorbent for iodine uptake and organic dye degradation[J]. Crystal Growth & Design, 2020, 20(12): 7833-7839. [37] SHAMS S, AHMAD W, MEMON A H, et al. Facile synthesis of laccase mimic Cu/H3BTC MOF for efficient dye degradation and detection of phenolic pollutants[J]. RSC Advances, 2019, 9(70): 40845-40854. [38] SHAMS S, AHMAD W, MEMON A H, et al. Cu/H3BTC MOF as a potential antibacterial therapeutic agent against staphylococcus aureus and escherichia coli[J]. New Journal of Chemistry, 2020, 44(41): 17671-17678. [39] LIU B, LING X, GUO G. Two novel 3D coordination polymers based on isonicotinic acid: syntheses, crystal structures and fluorescence[J]. Journal of Solid State Chemistry, 2006, 179(3): 883-890. [40] ZHANG L, WANG X, HU M. Crystal structures and photoluminescent properties of two d10 metal coordination polymers based on 5-aminodiacetic isophthalic acid[J]. Inorganic Chemistry Communications, 2014, 45: 75-78. [41] MIAO J L, NIE Y, XIONG Z X, et al. Stimulus-responsive reversible thermochromism and exciplex emission of a Zn(Ⅱ) complex and selective sensing of NH3 gas[J]. Dalton Transactions, 2019: 48, 5000-5006. |