人工晶体学报 ›› 2021, Vol. 50 ›› Issue (9): 1603-1624.
• 特邀综述 • 下一篇
王涛, 贾志泰, 李阳, 张健, 陶绪堂
收稿日期:
2021-08-07
出版日期:
2021-09-15
发布日期:
2021-10-15
通讯作者:
贾志泰,博士,教授。E-mail:z.jia@sdu.edu.cn;陶绪堂,博士,教授。E-mail:txt@sdu.edu.cn
作者简介:
王 涛(1994—),山东省人,博士。E-mail:t.wang@sdu.edu.cn
基金资助:
WANG Tao, JIA Zhitai, LI Yang, ZHANG Jian, TAO Xutang
Received:
2021-08-07
Online:
2021-09-15
Published:
2021-10-15
摘要: 单晶光纤(single-crystal fiber),是一种纤维形态的晶体材料,凭借优异的物理和化学性能以及大长径比的结构特点在国防及民生领域都有着广泛的应用前景。随着导模法、激光加热基座法以及微下拉法等生长技术的日渐成熟,单晶光纤迎来了科学研究和应用发展的黄金时期,其材料种类以及应用方向均呈现多元化发展态势,其中面向高温传感领域的高熔点氧化物单晶光纤凭借其耐高温、抗氧化、结构紧凑等特点在强氧化、强辐射、强腐蚀、强电磁干扰等极端环境中展现出了巨大的应用潜力。近年来,研究者们不断将光学、声学等传感技术与单晶光纤介质相结合,在保持传感器结构灵活性的基础上,拓宽了常规玻璃光纤传感器的使用温度,同时弥补了热电偶等传统接触式测温技术在恶劣环境中寿命较低的缺陷。本文以单晶光纤的制备技术为出发点,回顾了单晶光纤的发展历史,分析了单晶光纤三种主要制备方法的技术特点及发展现状。同时,总结了单晶光纤在高温传感领域的主要研究成果,展望了单晶光纤高温传感技术的应用前景。
中图分类号:
王涛, 贾志泰, 李阳, 张健, 陶绪堂. 单晶光纤制备及高温传感器研究进展[J]. 人工晶体学报, 2021, 50(9): 1603-1624.
WANG Tao, JIA Zhitai, LI Yang, ZHANG Jian, TAO Xutang. Single-Crystal Fiber Growth and Single-Crystal Fiber High-Temperature Sensors: Review and Perspective[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(9): 1603-1624.
[1] WANG T, ZHANG J, ZHANG N, et al. Single crystal fibers: diversified functional crystal material[J]. Advanced Fiber Materials, 2019, 1(3/4): 163-187. [2] 原东升,贾志泰,舒 骏,等.微下拉晶体光纤生长设备研制及YAG单晶生长[J].人工晶体学报,2014,43(6):1317-1322. YUAN D S, JIA Z T, SHU J, et al. Development of micro-pulling-down equipment for crystal fiber growth and YAG single crystal growth[J]. Journal of Synthetic Crystals, 2014, 43(6): 1317-1322(in Chinese). [3] ANDRADE D C. The flow in metals under large constant stresses[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1914, 90(619): 329-342. [4] CZOCHRALSKI J. A new method for the measurement of the crystallization rate of metals[J]. Zeitschrift Für Physikalische Chemie, 1918, 92: 219-221. [5] GOMPERZ E V. Untersuchungen an einkristalldrähten[J]. Zeitschrift Für Physik, 1922, 8(1): 184-190. [6] 张中晗,戴 云,王阳啸,等.单晶光纤的生长技术与应用研究[J].量子电子学报,2021,38(2):192-213+130. ZHANG Z H, DAI Y, WANG Y X, et al. Crystal growth techniques and applications of single-crystal fibers[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 192-213+130(in Chinese). [7] 魏艳龙,王 高,王兴起,等.铱铑合金超声导波方法的固体火箭发动机燃烧室温度测试[J].推进技术,2018,39(8):1856-1862. WEI Y L, WANG G, WANG X Q, et al. IrRth40 thermometry combustion chamber temperature measurement for solid rocket motor[J]. Journal of Propulsion Technology, 2018, 39(8): 1856-1862(in Chinese). [8] 王 涛,张 健,张 娜,等.单晶光纤制备及单晶光纤激光器研究进展[J].激光与光电子学进展,2019,56(17):170611. WANG T, ZHANG J, ZHANG N, et al. Research progress in preparation of single crystal fiber and fiber lasers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170611(in Chinese). [9] ZHANG Y B, PICKRELL G R, QI B, et al. Single-crystal sapphire-based optical high-temperature sensor for harsh environments[C]//2004: 157-164. [10] XU S Y, WANG Z H, GUI L J. Contact mode thermal sensors for ultrahigh-temperature region of 2000-3500 K[J]. Rare Metals, 2019, 38(8): 713-720. [11] WERNER M R, FAHRNER W R. Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications[J]. IEEE Transactions on Industrial Electronics, 2001, 48(2): 249-257. [12] SHI R, NING L X, HUANG Y, et al. Li4SrCa(SiO4)2∶Eu2+: a potential temperature sensor with unique optical thermometric properties[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 9691-9695. [13] HOLMSTEN M, IVARSSON J, FALK R, et al. Inhomogeneity measurements of long thermocouples using a short movable heating zone[J]. International Journal of Thermophysics, 2008, 29(3): 915-925. [14] BENTLEY R. Thermocouple materials and their properties[R]. CSIRO Technical Report, 1988. [15] WANG T, ZHANG J, YANG L, et al. Fabrication and sensitivity optimization of garnet crystal-fiber ultrasonic temperature sensor[J]. Journal of Materials Chemistry C, 2020, 8(11): 3830-3837. [16] WANG Y, JIA Y, CHEN Q S, et al. A passive wireless temperature sensor for harsh environment applications[J]. Sensors, 2008, 8(12): 7982-7995. [17] CHEN H, BURIC M, OHODNICKI P R, et al. Review and perspective: sapphire optical fiber cladding development for harsh environment sensing[J]. Applied Physics Reviews, 2018, 5(1): 011102. [18] WEI Y L, LIANG H J, WANG G, et al. Ultrasonic thermometric measurement system for solid rocket combustion chambers[J]. Ultrasonics, 2021, 113: 106361. [19] YAN A D, CHEN R Z, ZAGHLOUL M, et al. Sapphire fiber optical hydrogen sensors for high-temperature environments[J]. IEEE Photonics Technology Letters, 2016, 28(1): 47-50. [20] CHORPENING B, BURIC M, LIU B, et al. Progress toward multipoint high temperature sensing with sapphire optical fiber for power generation[J]. NETL, 2018. [21] YAN A D, CHEN R Z, POOLE Z L, et al. Fiber optical chemical sensors rated for 800 ℃ operation[C]. 2015 Conference on Lasers and Electro-Optics(CLEO): STh4O.3. [22] ANDREETA M R B, HERNANDES A C. Laser-heated pedestal growth of oxide fibers[M]//Springer Handbook of Crystal Growth. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 393-432. [23] 王楠楠,王 高,李仰军,等.新型激光加热基座生长法生长氧化锆单晶光纤[J].激光技术,2012,36(1):19-21. WANG N N, WANG G, LI Y J, et al. Zirconia single crystal fiber generation based on new laser heating pedestal growth[J]. Laser Technology, 2012, 36(1): 19-21(in Chinese). [24] 顾菊观,沈永行,陈曙英,等.LHPG法单晶光纤生长中的熔区控制技术[J].材料科学与工程,2001,19(4):20-23. GU J G, SHEN Y H, CHEN S Y, et al. Molten zone controlling technique of single crystal fiber by means of LHPG growth[J]. Materials Science and Engineering, 2001, 19(4): 20-23(in Chinese). [25] RUDOLPH P, FUKUDA T. Fiber crystal growth from the melt[J]. Crystal Research and Technology, 1999, 34(1): 3-40. [26] GASSON D B, COCKAYNE B. Oxide crystal growth using gas lasers[J]. Journal of Materials Science, 1970, 5(2): 100-104. [27] HAGGERTY J S. Production of fibers by a floating zone fiber drawing technique[R]. US: US Gov.Public, 1972. [28] FEJER M, BYER R L, FEIGELSON R, et al. Growth and characterization of single crystal refractory oxide fibers[C]//Proc SPIE 0320, Advances in Infrared Fibers Ⅱ, 1982, 0320: 50-55. [29] FEIGELSON R S. The laser-heated pedestal growth method: a powerful tool in the search for new high performance laser crystals[M]//Tunable Solid State Lasers. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985: 129-142. [30] FEJER M M, MAGEL G A, BYER R L. High-speed high-resolution fiber diameter variation measurement system[J]. Applied Optics, 1985, 24(15): 2362-2368. [31] UDA S, TILLER W A. The influence of an interface electric field on the distribution coefficient of chromium in LiNbO3[J]. Journal of Crystal Growth, 1992, 121(1/2): 93-110. [32] SUGIYAMA Y, HATAKEYAMA I, YOKOHAMA I. Growth of a-axis strontium barium niobate single crystal fibers[J]. Journal of Crystal Growth, 1993, 134(3/4): 255-265. [33] PHOMSAKHA V, CHANG R S F, DJEU N. Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers[J]. Review of Scientific Instruments, 1994, 65(12): 3860-3861. [34] YOKOO A, TOMARU S, YOKOHAMA I, et al. A new growth method for long rod-like organic nonlinear optical crystals with phase-matched direction[J]. Journal of Crystal Growth, 1995, 156(3): 279-284. [35] IMAI T, YAGI S, SUGIYAMA Y, et al. Growth of potassium tantalate niobate single crystal fibers by the laser-heated pedestal growth method assisted by a crystal cooling technique[J]. Journal of Crystal Growth, 1995, 147(3/4): 350-354. [36] BRÜCK E, GELDERS H J, HARRISON B J, et al. Laser-heated fibre pedestal growth under UHV conditions[J]. Journal of Crystal Growth, 1996, 166(1/2/3/4): 394-397. [37] NUBLING R K, HARRINGTON J A. Optical properties of single-crystal sapphire fibers[J]. Applied Optics, 1997, 36(24): 5934-5940. [38] MATSUKURA M, CHEN Z M, ADACHI M, et al. Growth of potassium lithium niobate single-crystal fibers by the laser-heated pedestal growth method[J]. Japanese Journal of Applied Physics, 1997, 36(Part 1, No. 9B): 5947-5949. [39] REYES ARDILA D, ANDREETA J P, RIBEIRO C T M, et al. Improved laser-heated pedestal growth system for crystal growth in medium and high isostatic pressure environment[J]. Review of Scientific Instruments, 1999, 70(12): 4606-4608. [40] ARDILA D R, BARBOSA L B, ANDREETA J P. Bifocal spherical mirror for laser processing[J]. Review of Scientific Instruments, 2001, 72(12): 4415-4418. [41] LAVERSENNE L, GUYOT Y, GOUTAUDIER C, et al. Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: cubic Y2O3, Lu2O3 and monoclinic Gd2O3[J]. Optical Materials, 2001, 16(4): 475-483. [42] ANDREETA M R B, ANDREETA E R M, HERNANDES A C, et al. Thermal gradient control at the solid-liquid interface in the laser-heated pedestal growth technique[J]. Journal of Crystal Growth, 2002, 234(4): 759-761. [43] ANDREETA M R B, CARASCHI L C, HERNANDES A C. Automatic diameter control system applied to the laser heated pedestal growth technique[J]. Materials Research, 2003, 6(1): 107-110. [44] LO C Y, HUANG K Y, CHEN J C, et al. Double-clad Cr4+∶YAG crystal fiber amplifier[J]. Optics Letters, 2005, 30(2): 129-131. [45] NIE C D, BERA S, HARRINGTON J A. Growth of single-crystal YAG fiber optics[J]. Optics Express, 2016, 24(14): 15522. [46] BURIC M, YIP M J, CHORPENING B, et al. Laser heated pedestal growth system commissioning and fiber processing[C]//SPIE Commercial+Scientific Sensing and Imaging. Proc SPIE 9852, Fiber Optic Sensors and Applications XIII, Baltimore, Maryland, USA. 2016, 9852: 985219. [47] KIM W, BAYYA S, SHAW L B, et al. Crystal fiber lasers[C]//SPIE Optical Engineering+Applications. Proc SPIE 10382, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications Ⅺ, San Diego, California, USA. 2017, 1038: 103820Q. [48] PROKOFIEV V V, ANDREETA J P, DE LIMA C J, et al. Growth of single-crystal photorefractive fibers of Bi12SiO20 and Bi12TiO20 by the laser-heated pedestal growth method[J]. Journal of Crystal Growth, 1994, 137(3/4): 528-534. [49] BURIC M, LIU B, THAPA J, et al. Single-crystal fiber structures for harsh environment applications (Rising Researcher Presentation)[C]//SPIE Commercial+Scientific Sensing and Imaging. Proc SPIE 10654, Fiber Optic Sensors and Applications XV, Orlando, Florida, USA. 2018, 1065: 106540 N. [50] BERA S, NIE C D, SOSKIND M G, et al. Growth and lasing of single crystal YAG fibers with different Ho3+ concentrations[J]. Optical Materials, 2018, 75: 44-48. [51] BERA S, NIE C D, HARRINGTON J A. Growth of coilable yttrium aluminum garnet single crystal fibers with low loss and tailored rare-earth dopant concentration, using laser heated pedestal growth technique[C]. Advanced Solid State Lasers, 2017. [52] MAXWELL G, PONTING B, GEBREMICHAEL E, et al. Advances in single-crystal fibers and thin rods grown by laser heated pedestal growth[J]. Crystals, 2017, 7(1): 12. [53] MAXWELL G, PONTING B, SOLEIMANI N, et al. Single-crystal fibers for higher-power lasers[J]. SPIE Newsroom, 2014. DOI:10.1117/2.1201401.005298. [54] KIM W, SHAW B, BAYYA S, et al. Cladded single crystal fibers for high power fiber lasers[C]//SPIE Optical Engineering + Applications. Proc SPIE 9958, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications X, San Diego, California, USA. 2016, 9958: 99580O. [55] SHAW L B, ASKINS C, KIM W, et al. Cladding pumped single crystal Yb∶YAG fiber amplifier[C]. Advance Solid State Lasers, 2015. [56] DUBINSKII M, ZHANG J, FROMZEL V, et al. Low-loss ‘crystalline-core/crystalline-clad’ (C4) fibers for highly power scalable high efficiency fiber lasers[J]. Optics Express, 2018, 26(4): 5092-5101. [57] BURIC M P, LIU B, BERA S, et al. Fabrication and on-line evaluation of single crystal fiber via laser-heated pedestal growth[C]//Fiber Optic Sensors and Applications XVI. April 14-18, 2019. Baltimore, USA. SPIE, 2019. [58] LIU B, BURIC M, WUENSCHELL J, et al. Optical properties and long-term stability of unclad single crystal sapphire fiber in harsh environments[C]//SPIE OPTO. Proc SPIE 10914, Optical Components and Materials XVI, San Francisco, California, USA. 2019, 1091: 109140Z. [59] ACKERMANN H, KIM W, FLOREA C, et al., Single crystal fibers for high power lasers[C]//High-Power Lasers 2012: Technology and Systems, 2012. [60] KIM W, BAYYA S, SHAW B, et al. Hydrothermally cladded crystalline fibers for laser applications[J]. Optical Materials Express, 2019, 9(6): 2716-2728. [61] MAXWELL G, SOLEIMANI N, PONTING B, et al. Coilable single crystal fibers of doped-YAG for high power laser applications[C]//SPIE Defense, Security, and Sensing. Proc SPIE 8733, Laser Technology for Defense and Security Ⅸ, Baltimore, Maryland, USA. 2013, 8733: 87330T. [62] KIM W, FLOREA C, BAKER C, et al. Single crystal fibers for high power lasers[C]//SPIE Security + Defence. Proc SPIE 8547, High-Power Lasers 2012: Technology and Systems, Edinburgh, United Kingdom. 2012, 8547: 85470K. [63] GUZIK M, PEJCHAL J, YOSHIKAWA A, et al. Structural investigations of Lu2O3 as single crystal and polycrystalline transparent ceramic[J]. Crystal Growth & Design, 2014, 14(7): 3327-3334. [64] MAO T C, CHEN J C, HU C C. Characterization of the growth mechanism of YIG crystal fibers using the laser heated pedestal growth method[J]. Journal of Crystal Growth, 2005, 282(1/2): 143-151. [65] ROMERO J J, MONTOYA E, BAUSÁ L E, et al. Multiwavelength laser action of Nd3+∶YAlO3 single crystals grown by the laser heated pedestal growth method[J]. Optical Materials, 2004, 24(4): 643-650. [66] ROMERO J J, ANDREETA M R B, ANDREETA E R M, et al. Growth and characterization of Nd-doped SBN single crystal fibers[J]. Applied Physics A, 2004, 78(7): 1037-1042. [67] ITO M, HRAIECH S, GOUTAUDIER C, et al. Growth of Yb3+-doped KY3F10 concentration gradient crystal fiber by laser-heated pedestal growth (LHPG) technique[J]. Journal of Crystal Growth, 2008, 310(1): 140-144. [68] JIANG Y J, GUO R Y, BHALLA A S. Growth and dielectric properties of Ta2O5 single crystals grown by laser heated pedestal growth technique[J]. Chinese Journal of Lasers, 2008, 35(11): 1710-1712. [69] FARHI H, LEBBOU K, BELKAHLA S, et al. Fiber single crystal growth by LHPG technique and optical characterization of Ce3+-doped Lu2SiO5[J]. Optical Materials, 2008, 30(9): 1461-1467. [70] PHILIPPEN J, GUGUSCHEV C, KLIMM D. Single crystal fiber growth of cerium doped strontium yttrate, SrY2O4∶Ce3+[J]. Journal of Crystal Growth, 2017, 459: 17-22. [71] SILVA M S, JESUS L M, BARBOSA L B, et al. Crucibleless crystal growth and Radioluminescence study of calcium tungstate single crystal fiber[J]. Optical Materials, 2014, 37: 51-54. [72] BOULON G, ITO M, GOUTAUDIER C, et al. Advances in growth of fiber crystal by the LHPG technique. Application to the optimization of Yb3+-doped CaF2 laser crystals[J]. Journal of Crystal Growth, 2006, 292(2): 230-235. [73] YOSHIKAWA A, BOULON G, LAVERSENNE L, et al. Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals[J]. Journal of Applied Physics, 2003, 94(9): 5479-5488. [74] CHEN C Y, CHEN J C, CHIA C T. Growth and optical properties of different compositions of LiNbO3 single crystal fibers[J]. Optical Materials, 2007, 30(3): 393-398. [75] HUANG C H, CHEN J C, HU C. YVO4 single-crystal fiber growth by the LHPG method[J]. Journal of Crystal Growth, 2000, 211(1/2/3/4): 237-241. [76] FERRARI C R, DE CAMARGO A S S, NUNES L A O, et al. Laser heated pedestal growth and optical characterization of CaTa2O6 single crystal fiber[J]. Journal of Crystal Growth, 2004, 266(4): 475-480. [77] ANDREETA M R B, ANDREETA E R M, HERNANDES A C. Laser-heated pedestal growth of colorless LaAlO3 single crystal fiber[J]. Journal of Crystal Growth, 2005, 275(1/2): e757-e761. [78] WANG D H, HOU W T, LI N, et al. Defects and optical property of single-crystal sapphire fibers grown by edge-defined film-fed growth method[J]. Journal of Inorganic Materials, 2020, 35(9): 1053. [79] 穆文祥.β-Ga2O3单晶的生长、加工及性能研究[D].济南:山东大学,2018. MU W X. Study on the single crystal growth, process and properties of β-Ga2O3[D]. Jinan: Shandong University, 2018(in Chinese). [80] LABELLE H E Jr. Growth of controlled profile crystals from the melt: part Ⅱ -edge-defined, film-fed growth (EFG)[J]. Materials Research Bulletin, 1971, 6(7): 581-589. [81] KURLOV V N, STRYUKOV D O, SHIKUNOVA I A. Growth of sapphire and oxide eutectic fibers by the EFG technique[J]. Journal of Physics: Conference Series, 2016, 673: 012017. [82] KATYBA G M, MELIKYANTS D G, CHERNOMYRDIN N V, et al. Terahertz transmission-mode scanning-probe near-field optical microscopy based on a flexible step-index sapphire fiber[C]//2021: 082010. [83] KIM K, CULLEN G, BERKMAN S, et al. Silicon sheet growth by the Inverted Stepanov Technique[R]. Quarterly report No. 1, March 22, 1976-June 30, 1976, RCA Labs., Princeton, NJ (USA), 1976. [84] 原东升.微下拉设备研制、单晶生长及功能晶体TbCOB的制备和性能研究[D].济南:山东大学,2016. YUAN D S. Equipment development and single crystal growth of micro-pulling-down, and the synthesis and investigations of functional crystal TbCOB[D]. Jinan: Shandong University, 2016(in Chinese). [85] FUKUDA T, CHANI V I. Shaped crystals[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. [86] WANG A Y, ZHANG J, YE S, et al. Optimized growth and laser application of Yb∶LuAG single-crystal fibers by micro-pulling-down technique[J]. Crystals, 2021, 11(2): 78. [87] WU B Y, NIE H K, WANG A Y, et al. Factors influencing optical uniformity of YAG single-crystal fiber grown by micro-pulling-down technology[J]. CrystEngComm, 2019, 21(45): 6929-6934. [88] YOKOTA Y, SATO M, TOTA K, et al. Growth of shape-controlled Ca3NbGa3Si2O14 and Sr3NbGa3Si2O14 single crystals by micro-pulling-down method and their physical properties[J]. Japanese Journal of Applied Physics, 2011, 50(9S2): 09ND03. [89] VEBER P, BARTOSIEWICZ K, DEBRAY J, et al. Lead-free piezoelectric crystals grown by the micro-pulling down technique in the BaTiO3-CaTiO3-BaZrO3 system[J]. CrystEngComm, 2019, 21(25): 3844-3853. [90] PIRZIO F, JUN S, TACCHINI S, et al. Multi-watt amplification in a birefringent Yb∶LiLuF4 single crystal fiber grown by micro-pulling-down[J]. Optics Letters, 2019, 44(17): 4095-4098. [91] DE MORAES J R, BALDOCHI S L, SOARES L D R L, et al. Growth, structural and optical characterizations of LiLa(1-x)Eux(WO4)2 single-crystalline fibers by the micro-pulling-down method[J]. Materials Research Bulletin, 2012, 47(3): 744-749. [92] FANG H S, YAN Z W, BOURRET-COURCHESNE E D. Numerical study of the micro-pulling-down process for sapphire fiber crystal growth[J]. Crystal Growth & Design, 2011, 11(1): 121-129. [93] LEBBOU K. Single crystals fiber technology design. Where we are today?[J]. Optical Materials, 2017, 63: 13-18. [94] 丁祖昌,陈继勤.宝石单晶光纤与高温光纤测温计[J].高技术通讯,1992,2(6):27-30. DING Z C, CHEN J Q. Single crystal sapphire fiber and high temperature optical fiber thermometer[J]. High Technology Letters, 1992, 2(6): 27-30(in Chinese). [95] 余 四,叶林华,陈继勤,等.Ti3+∶Al2O3单晶光纤的生长[J].人工晶体学报,1991,20(Z1):333. YU S, YE L H, CHEN J Q, et al. Growth of Ti3+∶Al2O3 single crystal fibers[J]. Journal of Synthetic Crystals, 1991, 20(Z1): 333(in Chinese). [96] 卢子宏,陈继勤,陈溪芳,等.单晶光纤生长中的直径波动[J].硅酸盐学报,1990,18(3):262-267. LU Z H, CHEN J Q, CHEN X F, et al. The diameter fluctuation in the growth of single crystal fibers[J]. Journal of the Chinese Ceramic Society, 1990, 18(3): 262-267(in Chinese). [97] ZHAO Y G, WANG L, CHEN W D, et al. 35 W continuous-wave Ho∶YAG single-crystal fiber laser[J]. High Power Laser Science and Engineering, 2020, 8: e25. DOI:10.1017/hpl.2020.25. [98] DAI Y, ZHANG Z H, WANG Y X, et al. Growth of Tm∶Lu3Al5O12 single crystal fiber from transparent ceramics by laser-heated pedestal method and its spectral properties[J]. Optical Materials, 2021, 111: 110674. [99] YANG Y L, YE L H, BAO R J, et al. Growth and characterization of Yb∶Ho∶YAG single crystal fiber[J]. Infrared Physics & Technology, 2018, 91: 85-89. [100] WANG N N, WANG X L, HU X H, et al. 41.8 W output power, 200 kHz repetition rate ultra-fast laser based on Yb∶YAG single crystal fiber(SCF)amplifier[J]. Optics & Laser Technology, 2020, 127: 106202. [101] LIU J, DONG J F, ZHAO Y G, et al. Tm∶YAG single-crystal fiber laser[J]. Optics Letters, 2021. DOI:10.1364/ol.434618. [102] WANG Y X, WANG S Z, WANG J Y, et al. High-efficiency ~μm CW laser operation of LD-pumped Tm3+∶CaF2 single-crystal fibers[J]. Optics Express, 2020, 28(5): 6684. [103] LIU J, DONG J F, WANG Y Y, et al. Laser operation of Tm∶LuAG single-crystal fiber grown by the micro-pulling down method[J]. Crystals, 2021, 11(8): 898. [104] 王 高,徐兆勇,周汉昌.基于蓝宝石光纤传感器的瞬态高温测试及校准技术[J].光电子·激光,2005,16(4):441-443. WANG G, XU Z Y, ZHOU H C. Transient high temperature measurement based on sapphire fiber sensor and calibration technology[J]. Journal of Optoelectronicslaser, 2005, 16(4): 441-443(in Chinese). [105] DILS R R. High-temperature optical fiber thermometer[J]. Journal of Applied Physics, 1983, 54(3): 1198-1201. [106] 庞拂飞,王之凤,刘奂奂,等.蓝宝石光纤及其高温传感器[J].光子学报, 2019, 48(11): 1148004. PANG F F, WANG Z F, LIU H H, et al. Sapphire fiber and its application in high temperature sensors[J]. Acta Optica Sinica, 2019, 48(11): 1148004(in Chinese). [107] AIZAWA H, OHISHI N, OGAWA S, et al. Characteristics of sapphire fiber connected with ruby sensor head for the fiber-optic thermometer applications[J]. Sensors and Actuators A: Physical, 2002, 101(1/2): 42-48. [108] AN N, ZHOU H L, ZHU K S, et al. Improved temperature sensing performance of YAG∶Ho3+/Yb3+ by doping Ce3+ ions based on up-conversion luminescence[J]. Journal of Alloys and Compounds, 2020, 843: 156057. [109] LEE C E, TAYLOR H F. Interferometric optical fibre sensors using internal mirrors[J]. Electronics Letters, 1988, 24(4): 193. [110] TIAN Z, YU Z, LIU B, et al. Sourceless optical fiber high temperature sensor[J]. Optics Letters, 2016, 41(2): 195-198. [111] YANG S, FENG Z A, JIA X T, et al. All-sapphire miniature optical fiber tip sensor for high temperature measurement[J]. Journal of Lightwave Technology, 2020, 38(7): 1988-1997. [112] HABISREUTHER T, ELSMANN T, PAN Z W, et al. Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics[J]. Applied Thermal Engineering, 2015, 91: 860-865. [113] WILSON B A, BLUE T E. Quasi-distributed temperature sensing using type-Ⅱ fiber Bragg gratings in sapphire optical fiber to temperatures up to 1300 ℃[J]. IEEE Sensors Journal, 2018, 18(20): 8345-8351. [114] HUANG J, LAN X W, SONG Y, et al. Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing[J]. IEEE Photonics Technology Letters, 2015, 27(13): 1398-1401. [115] LIU B, OHODNICKI P R. Fabrication and application of single crystal fiber: review and prospective[J]. Advanced Materials Technologies, 2021: 2100125. [116] LIU B, YU Z H, HILL C, et al. Sapphire-fiber-based distributed high-temperature sensing system[J]. Optics Letters, 2016, 41(18): 4405-4408. [117] GUO Y Q, XIA W, HU Z Z, et al. High-temperature sensor instrumentation with a thin-film-based sapphire fiber[J]. Applied Optics, 2017, 56(8): 2068-2073. [118] TONG L M, SHEN Y H, YE L H, et al. A zirconia single-crystal fibre-optic sensor for contact measurement of temperatures above 2000 ℃[J]. Measurement Science and Technology, 1999, 10(7): 607-611. [119] DAW J, REMPE J, PALMER J, et al. NEET in-pile ultrasonic sensor enablement-final report[R]. Office of Scientific and Technical Information (OSTI), 2014. [120] LAURIE M, MAGALLON D, REMPE J, et al. Ultrasonic high-temperature sensors: past experiments and prospects for future use[J]. International Journal of Thermophysics, 2010, 31(8/9): 1417-1427. [121] LIANG H J, YANG F B, YANG L, et al. Research and implementation of a 1800 ℃ sapphire ultrasonic thermometer[J]. Journal of Sensors, 2017, 2017: 1-7. [122] WANG T, WANG H Y, ZHANG J, et al. Design and directional growth of (Mg1-xZnx)(Al1-yCry)2O4 single-crystal fibers for high-sensitivity and high-temperature sensing based on lattice doping engineering and acoustic anisotropy[J]. Advanced Functional Materials, 2021: 2103224. [123] WEI Y L, GAO Y B, XIAO Z Q, et al. Ultrasonic Al2O3 ceramic thermometry in high-temperature oxidation environment[J]. Sensors, 2016, 16(11): 1905. |
[1] | 徐杰, 宋青松, 刘坚, 丁雨憧, 李东振, 徐晓东, 徐军. Sm∶YAG/Sm∶Y3ScAl4O12单晶光纤的生长及光谱性能[J]. 人工晶体学报, 2021, 50(7): 1391-1396. |
[2] | 陈晨, 赵堃, 韩焕鹏. 6英寸低位错锗单晶生长热场设计[J]. 人工晶体学报, 2021, 50(6): 979-986. |
[3] | 陈伟超, 罗平, 王庆国, 唐慧丽, 薛艳艳, 段金柱, 王勤峰, 雷震霖, 徐军. 多片导模法蓝宝石晶体的缺陷研究[J]. 人工晶体学报, 2021, 50(4): 741-746. |
[4] | 王贵吉, 尹延如, 贾志泰, 陶绪堂. Er:Lu2O3单晶的导模法生长及性能表征[J]. 人工晶体学报, 2021, 50(4): 747-751. |
[5] | 王庆国, 刘波, 罗平, 唐慧丽, 吴锋, 康森, 段金柱, 王勤峰, 徐军. 钛宝石晶体的泡生法生长和闪烁发光性能[J]. 人工晶体学报, 2021, 50(4): 762-767. |
[6] | 黄巍;何知宇;陈宝军;朱世富;赵北君. 中远红外非线性光学晶体AgGaGenQ2(n+1)(Q=S、Se)研究进展[J]. 人工晶体学报, 2020, 49(8): 1417-1426. |
[7] | 陈莹;袁泽锐;方攀;谢婧;张羽;尹文龙;康彬. 新型红外非线性光学晶体SrCdGeSe4生长与性质表征[J]. 人工晶体学报, 2020, 49(8): 1505-1508. |
[8] | 王东海;徐军;李东振;王庆国;罗平;董建树;潘燕萍. 导模法生长超大尺寸蓝宝石板材的研究[J]. 人工晶体学报, 2020, 49(3): 398-401. |
[9] | 张晋, 胡壮壮, 穆文祥, 田旭升, 冯倩, 贾志泰, 张进成, 陶绪堂, 郝跃. 高质量氧化镓单晶及肖特基二极管的制备[J]. 人工晶体学报, 2020, 49(11): 2194-2199. |
[10] | 罗平;王庆国;董建树;王东海;吴锋;唐慧丽;徐军. 导模法(EFG)生长大尺寸厚壁管状蓝宝石单晶[J]. 人工晶体学报, 2019, 48(7): 1214-1215. |
[11] | 陶绪堂;王善朋;王蕾;尹延如;刘阳;张国栋;张健;胡强强;贾志泰;高泽亮;穆文祥. 晶体材料研究——从体块晶体到微纳米晶体[J]. 人工晶体学报, 2019, 48(5): 763-786. |
[12] | 陈亚萍;孙志刚;赵艳;廖凡;陈红兵. Nd3+∶YCa4O(BO3)3单晶的坩埚下降法生长与光谱性能[J]. 人工晶体学报, 2019, 48(11): 2008-2013. |
[13] | 程红娟;张胜男;练小正;金雷;徐永宽. β-Ga2O3体单晶X射线光电子能谱分析[J]. 人工晶体学报, 2019, 48(1): 8-12. |
[14] | 冯波;赵北君;何知宇;陈宝军;黄巍;刘慧;刘梦迪;沙铭宇. CdSiP2多晶提纯与单晶生长[J]. 人工晶体学报, 2018, 47(7): 1299-1304. |
[15] | 李志鹏;丁瑞;周恒为;鹿桂花;黄以能. 溶液蒸发法左旋葡聚糖单晶生长的研究[J]. 人工晶体学报, 2018, 47(11): 2300-2304. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||