[1] SOROKINA I T. Cr2+-doped Ⅱ-Ⅵ materials for lasers and nonlinear optics[J]. Optical Materials, 2004, 26(4): 395-412. [2] DEMIRBAS U, SENNAROGLU A, SOMER M. Synthesis and characterization of diffusion-doped Cr2+∶ZnSe and Fe2+∶ZnSe[J]. Optical Materials, 2006, 28(3): 231-240. [3] MIROV S B, FEDOROV V V, MOSKALEV I S, et al. Recent progress in transition metal doped Ⅱ-Ⅵ mid-IR lasers[C]//Defense and Security Symposium. Proc SPIE 6552, Laser Source Technology for Defense and Security Ⅲ, Orlando, Florida, USA, 2007, 6552: 204-216. [4] FEDOROV V V, GALLIAN A, MOSKALEV I, et al. En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped Ⅱ-Ⅵ semiconductors[J]. Journal of Luminescence, 2007, 125(1/2): 184-195. [5] FEDOROV V V, MIROV S B, GALLIAN A, et al. 3.77-5.05-μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures[J]. IEEE Journal of Quantum Electronics, 2006, 42(9): 907-917. [6] IL′ICHEV N N, DANILOV V P, KALINUSHKIN V P, et al. Superluminescent room-temperature Fe2+∶ZnSe IR radiation source[J]. Quantum Electronics, 2008, 38(2): 95-96. [7] KERNAL J, FEDOROV V V, GALLIAN A, et al. 3.9-4.8 μm gain-switched lasing of Fe∶ZnSe at room temperature[C]//Lasers and Applications in Science and Engineering. Proc SPIE 6100, Solid State Lasers XV: Technology and Devices, San Jose, California, USA, 2006, 6100: 103-111. [8] MYOUNG N, MARTYSHKIN D V, FEDOROV V V, et al. Energy scaling of 4.3 μm room temperature Fe∶ZnSe laser[J]. Optics Letters, 2011, 36(1): 94-96. [9] 张利明,周寿桓,赵 鸿,等.Fe2+掺杂中红外固体激光器技术综述[J].激光与红外,2012,42(4):360-364. ZHANG L M, ZHOU S H, ZHAO H, et al. Introduction of Fe2+ doped mid-infrared solid state laser[J]. Laser&Infrared, 2012, 42(4): 360-364(in Chinese). [10] KOLESNIKOV N N, JAMES R B, BERZIGIAROVA N S, et al. HPVB- and HPVZM-shaped growth of CdZnTe, CdSe, and ZnSe crystals[C]//International Symposium on Optical Science and Technology. Proc SPIE 4784, X-Ray and Gamma-Ray Detectors and Applications Ⅳ, Seattle, WA, USA, 2003, 4784: 93-104. [11] IL’ICHEV N N, SHAPKIN P V, GULYAMOVA E S, et al. Diffusion coefficient of Fe2+ in single-crystal ZnSe[J]. Inorganic Materials, 2010, 46(2): 112-115. [12] KOZLOVSKY V I, KOROSTELIN Y V, PODMAR’KOV Y P, et al. Middle infrared Fe2+∶ZnS, Fe2+∶ZnSe and Cr2+∶CdSe lasers: new results[J]. Journal of Physics: Conference Series, 2016, 740: 012006. [13] ADAMS J J, BIBEAU C, PAGE R H, et al. 4.0-4.5 μm lasing of Fe∶ZnSe below 180 K, a new mid-infrared laser material[J]. Optics Letters, 1999, 24(23): 1720-1722. [14] VELIKANOV S D, ZARETSKIY N A, ZOTOV E A, et al. Investigation of Fe∶ZnSe laser in pulsed and repetitively pulsed regimes[J]. Quantum Electronics, 2015, 45(1): 1-7. [15] PAN Q K, CHEN F, XIE J J, et al. Theoretical study of the characteristics of a continuous wave iron-doped ZnSe laser[J]. Laser Physics, 2018, 28(3): 035002. [16] DOROSHENKO M E, JELÍNKOVÁ H, JELÍNEK M, et al. Influence of the pumping wavelength on laser properties of Fe2+ ions in ZnSe crystal[J]. Optics Letters, 2019, 44(7): 1686-1689. [17] FROLOV M P, KOROSTELIN Y V, KOZLOVSKY V I, et al. High-energy thermoelectrically cooled Fe∶ZnSe laser tunable over 3.75-4.82 μm[J]. Optics Letters, 2018, 43(3): 623-626. [18] VAKSMAN Y F, NITSUK Y A, YATSUN V V, et al. Optical absorption and diffusion of iron in ZnSe single crystals[J]. Semiconductors, 2010, 44(4): 444-447. |