[1] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58. [2] TREACY M M J, EBBESEN T W, GIBSON J M. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature, 1996, 381(6584): 678-680. [3] EBBESEN T W, LEZEC H J, HIURA H, et al. Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382(6586): 54-56. [4] KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters, 2001, 87(21): 215502. [5] MSP S, AH W. Analogies between polymer solutions and carbon nanotube dispersions[J]. Macromolecules, 1999, 32(20): 6864-6866. [6] 张娟玲,崔 屾.碳纳米管/聚合物复合材料[J].化学进展,2006,18(10):1313-1321. ZHANG J L, CUI S. Carbon nanotubes/polymer composites[J]. Progress in Chemistry, 2006, 18(10): 1313-1321(in Chinese). [7] XIAO Y P, WANG W J, WU Q. High active and easily prepared cobalt encapsulated in carbon nanotubes for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3948-3958. [8] LIU W J, YUAN K, RU Q X, et al. Functionalized halloysite template-assisted polyaniline synthesis high-efficiency iron/nitrogen-doped carbon nanotubes towards nonprecious ORR catalysts[J]. Arabian Journal of Chemistry, 2020, 13(4): 4954-4965. [9] LIU Z G, ZHANG X, JIANG Z X, et al. N-doped bamboo-like carbon nanotubes loading Co as ideal electrode material towards superior catalysis performance[J]. International Journal of Hydrogen Energy, 2020, 45(15): 8703-8714. [10] DASGUPTA K. Role of carbon nanotubes in the ballistic properties of boron carbide/carbon nanotube/ultrahigh molecular weight polyethylene composite armor[J]. Ceramics International, 2020, 46(4): 4137-4141. [11] GUO Z C, ZHOU S, LI J L, et al. Development of a paper-based microanalysis device doped with multi-walled carbon nanotubes for in vitro evaluation of fluorene cytotoxicity[J]. Bioelectrochemistry, 2020, 135: 107552. [12] KAŁU NY J, WALIGÓRSKI M, SZYMAN'SKI G M, et al. Reducing friction and engine vibrations with trace amounts of carbon nanotubes in the lubricating oil[J]. Tribology International, 2020, 151: 106484. [13] SILVESTRO L, JEAN PAUL GLEIZE P. Effect of carbon nanotubes on compressive, flexural and tensile strengths of Portland cement-based materials: a systematic literature review[J]. Construction and Building Materials, 2020, 264: 120237. [14] GERALDO V, DE OLIVEIRA S, SILVA E E D, et al. Synthesis of carbon nanotubes on sand grains for mortar reinforcement[J]. Construction and Building Materials, 2020, 252: 119044. [15] 张庆堂,瞿美臻,于作龙.锂离子电池导电剂研究进展[J].化学通报,2006,69(08):81. ZHANG Q T, QU M Z, YU Z L. Research progress of conductive agents for lithium-ion batteries[J]. Chemistry Bulletin, 2006, 69(8): 81(in Chinese). [16] 陈改荣,郭晓伟,王 辉,等.碳纳米管导电剂对锂离子电池电极材料的改性研究[J].功能材料信息,2013(5):21-25. CHEN G R, GUO X W, WANG H, et al. Study on modification of electrode materials of lithium ion battery by carbon nanotube conductive agent[J]. Functional Materials Information, 2013(5): 21-25(in Chinese). [17] IONESCU M I, LAFORGUE A. Synthesis of nitrogen-doped carbon nanotubes directly on metallic foams as cathode material with high mass load for lithium-air batteries[J]. Thin Solid Films, 2020, 709: 138211. [18] TIAN S, WANG Y S, CAI T H, et al. Polyaniline-derived carbon nanotubes as anode materials for potassium-ion batteries: insight into the effect of N-doping[J]. Applied Surface Science, 2020, 534: 147635. [19] ZHANG X L, YANG W S, LIU A F, et al. Anchoring mesoporous Fe3O4 nanospheres onto N-doped carbon nanotubes toward high-performance composite electrodes for supercapacitors[J]. Ceramics International, 2020, 46(14): 22373-22382. [20] CARVALHO V S, MIRANDA A N, NUNES W G, et al. Radially ordered carbon nanotubes performance for Li-O2 batteries: pre-treatment influence on capacity and discharge products[J]. Catalysis Today, 2020, 348: 299-306. [21] YAN H Y, XUE X X, FU Y Q, et al. Three-dimensional carbon nanotubes-encapsulated Li2FeSiO4 microspheres as advanced positive materials for lithium energy storage[J]. Ceramics International, 2020, 46(7): 9729-9733. [22] 中国国家标准化管理委员会.碳纳米管导电浆料:GB/T 33818—2017[S].北京:中国标准出版社,2017. China National Standardization Administration. Carbon nanotube conductive paste: GB/T33818-2017[S]. Beijing: Standards Press of China, 2017(in Chinese). [23] 顾鹂鋆,温 治,豆瑞锋,等.艾奇逊石墨化炉炉温分布特性的仿真研究[J].冶金能源,2012,31(5):28-32+38. GU L J, WEN Z, DOU R F, et al. Acheson graphitization furnace and the simulation of temperature distribution[J]. Energy for Metallurgical Industry, 2012, 31(5): 28-32+38(in Chinese). [24] 刘春雷,顾伟良.提高艾奇逊石墨化炉炉龄的探讨[J].炭素技术,2014,33(2):61-63. LIU C L, GU W L. Discussion on improving using life of Acheson graphitization furnace[J]. Carbon Techniques, 2014, 33(2): 61-63(in Chinese). [25] COLOMER J F, STEPHAN C, LEFRANT S, et al. Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method[J]. Chemical Physics Letters, 2000, 317(1/2): 83-89. [26] KATHYAYINI H, NAGARAJU N, FONSECA A, et al. Catalytic activity of Fe, Co and Fe/Co supported on Ca and Mg oxides, hydroxides and carbonates in the synthesis of carbon nanotubes[J]. Journal of Molecular Catalysis A: Chemical, 2004, 223(1/2): 129-136. [27] 兰永平,朱毅青,李为民,等.超细镍基催化剂的制备及表征[J].石油学报(石油加工),2011,27(5):706-711. LAN Y P, ZHU Y Q, LI W M, et al. Preparation and characterization of ultrafine Ni-based catalysts[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2011, 27(5): 706-711(in Chinese) [28] FONSECA A, HERNADI K, NAGY J B, et al. Optimization of catalytic production and purification of buckytubes[J]. Journal of Molecular Catalysis A: Chemical, 1996, 107(1/2/3): 159-168. [29] LIU X T, ZHANG Y S, NAHIL M A, et al. Development of Ni- and Fe- based catalysts with different metal particle sizes for the production of carbon nanotubes and hydrogen from thermo-chemical conversion of waste plastics[J]. Journal of Analytical and Applied Pyrolysis, 2017, 125: 32-39. [30] 董若景.冶金原理[M].北京:机械工业出版社,1980. DONG R J. Metallurgical principle[M]. Beijing: China Machine Press, 1980(in Chinese). [31] 沈曾民.新型碳材料[M].北京:化学工业出版社,2003. SHEN Z M. New carbon material[M]. Beijing: Chemical Industry Press, 2003(in Chinese). [32] WANG Y, WEI F, LUO G H, et al. The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor[J]. Chemical Physics Letters, 2002, 364(5/6): 568-572. |