人工晶体学报 ›› 2022, Vol. 51 ›› Issue (11): 1973-1982.
张家鑫, 彭燕, 陈秀芳, 谢雪健, 杨祥龙, 胡小波, 徐现刚
收稿日期:
2022-05-18
出版日期:
2022-11-15
发布日期:
2022-12-07
通讯作者:
彭 燕,博士,副教授。E-mail:pengyan@sdu.edu.cn
作者简介:
张家鑫(1999—),女,湖北省人,硕士研究生。E-mail:jiaxin_zhang@mail.sdu.edu.cn
ZHANG Jiaxin, PENG Yan, CHENG Xiufang, XIE Xuejian, YANG Xianglong, HU Xiaobo, XU Xiangang
Received:
2022-05-18
Online:
2022-11-15
Published:
2022-12-07
摘要: SiC作为代表性的第三代半导体材料,具有优异的物理化学性能。随着材料及应用的发展,SiC衬底在航天电源、电动汽车、智能电网、轨道交通、工业电机等领域的应用日益重要。相比第一代半导体材料如Si和第二代半导体材料如GaAs而言,SiC衬底质量还有很大的改善空间,是现阶段研发和产业的热点。其中SiC单晶缺陷,特别是一维位错缺陷的检测和降低,是近10年内重要的研究内容。本文重点对SiC中位错的形成原因、位错检测技术、位错密度降低方法及近年来SiC单晶中位错的优化水平进行总结归纳,并提出了SiC需要继续突破和发展的方向。
中图分类号:
张家鑫, 彭燕, 陈秀芳, 谢雪健, 杨祥龙, 胡小波, 徐现刚. 碳化硅单晶位错研究进展[J]. 人工晶体学报, 2022, 51(11): 1973-1982.
ZHANG Jiaxin, PENG Yan, CHENG Xiufang, XIE Xuejian, YANG Xianglong, HU Xiaobo, XU Xiangang. Research Progress of Dislocations in SiC Single Crystal[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(11): 1973-1982.
[1] MORKOÇ H, STRITE S, GAO G B, et al. Large-band-gap SiC, Ⅲ-V nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies[J]. Journal of Applied Physics, 1994, 76(3): 1363-1398. [2] 熊礼威,汪建华,满卫东,等.金刚石半导体研究进展[J].材料导报,2010,24(7):117-121. XIONG L W, WANG J H, MAN W D, et al. Progress in diamond semiconductor[J]. Materials Review, 2010, 24(7): 117-121(in Chinese). [3] DUAN P, PENG Y, WANG X W, et al. Preparation of high surface quality HTHP diamond for MPCVD diamond film growth[J]. Journal of Materials Review, 2021, 35(4): 4034-4037+4041. [4] HOMA M, SOBCZAK N, SOBCZAK J J, et al. Interaction between graphene-coated SiC single crystal and liquid copper[J]. Journal of Materials Engineering and Performance, 2018, 27(5): 2317-2329. [5] CHAVOSHI S Z, LUO X C. Atomic-scale characterization of occurring phenomena during hot nanometric cutting of single crystal 3C-SiC[J]. RSC Advances, 2016, 6(75): 71409-71424. [6] WEI W S, MO Y D, YU S H, et al. Influence of SiC hetero-polytype barriers on the performance of IMPATT terahertz diodes[J]. Superlattices and Microstructures, 2021, 152: 106844. [7] YANG H, ZHAO H S, WANG T W, et al. Preparation and antioxidant mechanism of TiSi2-Si-SiC/SiC bilayer coating on matrix graphite[J]. Journal of Alloys and Compounds, 2021, 858: 157721. [8] CHEN S L, ZHAO L F, WANG L, et al. Single-crystal N-doped SiC nanochannel array photoanode for efficient photoelectrochemical water splitting[J]. Journal of Materials Chemistry C, 2019, 7(11): 3173-3180. [9] YU J Y, YU Y, BAI Z Q, et al. Morphological and microstructural analysis of triangular defects in 4H-SiC homoepitaxial layers[J]. CrystEngComm, 2022, 24(8): 1582-1589. [10] YANG J W, SONG H P, JIAN J K, et al. Characterization of morphological defects related to micropipes in 4H-SiC thick homoepitaxial layers[J]. Journal of Crystal Growth, 2021, 568/569: 126182. [11] PARTHIBAN K, LAKSHMANAN P, GNANAVELBABU A. Experimental and theoretical yield strength of silicon carbide and hexagonal boron nitride reinforced Mg-Zn nanocomposites produced by the combined effects of ultrasonication and squeeze casting[J]. Silicon, 2022, 14(14): 8993-9007. [12] SUMATHI R R. Review—status and challenges in hetero-epitaxial growth approach for large diameter AlN single crystalline substrates[J]. ECS Journal of Solid State Science and Technology, 2021, 10(3): 035001. [13] KIM J G, YOO W S, PARK J Y, et al. Quantitative analysis of contact angle of water on SiC: polytype and polarity dependence[J]. ECS Journal of Solid State Science and Technology, 2020, 9(12): 123006. [14] HUANG Y H, WANG M C, LI J M, et al. Removal behavior of micropipe in 4H-SiC during micromachining[J]. Journal of Manufacturing Processes, 2021, 68: 888-897. [15] MCGUIRE S, BLASI R, WU P, et al. Automated mapping of micropipes in SiC wafers using polarized-light microscope[J]. Materials Science Forum, 2018, 924: 527-530. [16] LIU C J, PENG T H, WANG B, et al. Progress in single crystal growth of wide bandgap semiconductor SiC[J]. Materials Science Forum, 2019, 954: 35-45. [17] ARORA A, PATEL A, YADAV B S, et al. Study on evolution of micropipes from hexagonal voids in 4H-SiC crystals by cathodoluminescence imaging[J]. Microscopy and Microanalysis: the Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 2021, 27(1): 215-226. [18] 崔潆心,胡小波,徐现刚.物理气相传输法生长碳化硅单晶原生表面形貌研究[J].无机材料学报,2018,33(8):877-882. CUI Y X, HU X B, XU X G. As-grown surface morphologies of SiC single crystals grown by PVT method[J]. Journal of Inorganic Materials, 2018, 33(8): 877-882(in Chinese). [19] KLEPPINGER J W, CHAUDHURI S K, KARADAVUT O, et al. Defect characterization and charge transport measurements in high-resolution Ni/n-4H-SiC Schottky barrier radiation detectors fabricated on 250 μm epitaxial layers[J]. Journal of Applied Physics, 2021, 129(24): 244501. [20] AILIHUMAER T, PENG H Y, RAGHOTHAMACHAR B, et al. Relationship between basal plane dislocation distribution and local basal plane bending in PVT-grown 4H-SiC crystals[J]. Journal of Electronic Materials, 2020, 49(6): 3455-3464. [21] ZHAO L Y, YAN H, CHEN R S, et al. Quasi-in-situ observations of low-angle grain boundaries, twins and texture evolution during continuous annealing in a cold-rolled Mg-Zn-Gd alloy[J]. Materials Characterization, 2020, 170: 110697. [22] KOBAYASHI S, YANG W T, TOMOBE Y, et al. Low-angle boundary engineering for improving high-cycle fatigue property of 430 ferritic stainless steel[J]. Journal of Materials Science, 2020, 55(22): 9273-9285. [23] ABBASI A, FARUQUE A, ROY S, et al. Gate driver design in a 1 μm SiC CMOS process for heterogeneous integration inside SiC power module[J]. International Symposium on Microelectronics, 2020(1): 281-285. [24] SUDARSHAN T S, MAXIMENKO S I. Bulk growth of single crystal silicon carbide[J]. Microelectronic Engineering, 2006, 83(1): 155-159. [25] CHEN P C, MIAO W C, AHMED T, et al. Defect inspection techniques in SiC[J]. Nanoscale Research Letters, 2022, 17(1): 30. [26] 尹朋涛,于金英,杨祥龙,等.晶格畸变检测仪研究碳化硅晶片中位错缺陷分布[J].人工晶体学报,2021,50(4):752-756. YIN P T, YU J Y, YANG X L, et al. Dislocation distribution in SiC wafers studied by lattice distortion detector[J]. Journal of Synthetic Crystals, 2021, 50(4): 752-756(in Chinese). [27] WANG R Y, HUANG X L, LI J C. Optimized junction temperature fluctuation suppression technique for SiC MOSFETs in a wireless charging system[J]. Journal of Power Electronics, 2022, 22(5): 859-869. [28] ZHOU X T, JIA Y P, HU D Q, et al. A simulation-based comparison between Si and SiC MOSFETs on single-event burnout susceptibility[J]. IEEE Transactions on Electron Devices, 2019, 66(6): 2551-2556. [29] CHEN X Y, JIANG S, CHEN Y, et al. Steady-state over-current safe operation area (SOA) of the SiC MOSFET at cryogenic and room temperatures[J]. Cryogenics, 2022, 122: 103424. [30] SAMESHIMA J, SUGAHARA T, ISHINA T, et al. 3D imaging of backside metallization of SiC-SBD influenced by annealing[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(11): 10848-10856. [31] LU W H, WAN C P, ZHANG X Z, et al. The influence to uniform current distribution of SiC MOSFET modules based on the 3rd quadrant characteristics[J]. IOP Conference Series: Earth and Environmental Science, 2021, 772(1): 012032. [32] WANG D W, HU R B, CHEN G, et al. Heavy ion radiation and temperature effects on SiC Schottky barrier diode[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2021, 491: 52-58. [33] MAXIMENKO S I, PIROUZ P, SUDARSHAN T S. Investigation of the electrical activity of partial dislocations in SiC p-i-n diodes[J]. Applied Physics Letters, 2005, 87(3): 033503. [34] GALECKAS A, LINNROS J, PIROUZ P. Recombination-induced stacking faults: evidence for a general mechanism in hexagonal SiC[J]. Physical Review Letters, 2006, 96(2): 025502. [35] HEYDEMANN V D, SCHULZE N, BARRETT D L, et al. Growth of 6H and 4H silicon carbide single crystals by the modified Lely process utilizing a dual-seed crystal method[J]. Applied Physics Letters, 1996, 69(24): 3728-3730. [36] JAYATIRTHA H N, SPENCER M G, TAYLOR C, et al. Improvement in the growth rate of cubic silicon carbide bulk single crystals grown by the sublimation method[J]. Journal of Crystal Growth, 1997, 174(1/2/3/4): 662-668. [37] AVROV D D, BULATOV A V, DOROZHKIN S I, et al. Defect formation in silicon carbide large-scale ingots grown by sublimation technique[J]. Journal of Crystal Growth, 2005, 275(1/2): e485-e489. [38] 张红岩,刘云青,宁 敏,等.湿法腐蚀研究PVT法生长的SiC单晶中的位错[J].半导体技术,2014,39(12):926-929+935. ZHANG H Y, LIU Y Q, NING M, et al. Research on dislocation of SiC crystal grown by the PVT using wet etching technology[J]. Semiconductor Technology, 2014, 39(12): 926-929+935(in Chinese). [39] KIMOTO T, COOPER J. Fundamentals of silicon carbide technology[J]. Wiley-IEEE Press, 2014, 10.1002/9781118313534:1-10. [40] OHTANI N, KATSUNO M, TSUGE H, et al. Propagation behavior of threading dislocations during physical vapor transport growth of silicon carbide (SiC) single crystals[J]. Journal of Crystal Growth, 2006, 286(1): 55-60. [41] KIMOTO T, WATANABE H. Defect engineering in SiC technology for high-voltage power devices[J]. Applied Physics Express, 2020, 13(12): 120101. [42] KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 040103. [43] SUO H, TSUKIMOTO S, ETO K, et al. Evaluation of the increase in threading dislocation during the initial stage of physical vapor transport growth of 4H-SiC[J]. Japanese Journal of Applied Physics, 2018, 57(6): 065501. [44] TAKAHASHI J, OHTANI N, KANAYA M. Structural defects in α-SiC single crystals grown by the modified-Lely method[J]. Journal of Crystal Growth, 1996, 167(3/4): 596-606. [45] WELLMANN P J, QUEREN D, MÜLLER R, et al. Basal plane dislocation dynamics in highly p-type doped versus highly n-type doped SiC[J]. Materials Science Forum, 2006, 527/528/529: 79-82. [46] FRANK F C. Capillary equilibria of dislocated crystals[J]. Acta Crystallographica, 1951, 4(6): 497-501. [47] 王凤府.原料中掺入Si粉对SiC晶体质量的影响[D].西安:西安理工大学,2013. WANG F F. Effect of doping Si powder in raw materials on the quality of SiC crystal[D]. Xi’an: Xi’an University of Technology, 2013(in Chinese). [48] HUANG X R, BLACK D R, MACRANDER A T, et al. High-geometrical-resolution imaging of dislocations in SiC using monochromatic synchrotron topography[J]. Applied Physics Letters, 2007, 91(23): 231903. [49] FUJIE F, PENG H Y, AILIHUMAER T, et al. Synchrotron X-ray topographic image contrast variation of screw-type basal plane dislocations located at different depths below the crystal surface in 4H-SiC[J]. Acta Materialia, 2021, 208: 116746. [50] NISHIGUCHI T, FURUSHO T, ISSHIKI T, et al. Pair-generation of the basal-plane-dislocation during crystal growth of SiC[J]. Materials Science Forum, 2008, 600/601/602/603: 329-332. [51] OHTANI, NOBORU. Dislocation formation during physical vapor transport growth of 4H-SiC crystals[J]. Wide Bandgap Semiconductors for Power Electronics: Materials, Devices, Applications, 2021,1: 1-32. [52] OHSHIGE C, TAKAHASHI T, OHTANI N, et al. Defect formation during the initial stage of physical vapor transport growth of 4H-SiC in the[1120][J]. Journal of Crystal Growth, 2014, 408: 1-6. [53] MATSUHATA H, YAMAGUCHI H, SEKIGUCHI T, et al. Analysis of dislocation structures in 4H-SiC by synchrotron X-ray topography[J]. Electrical Engineering in Japan, 2016, 197(3): 3-17. [54] 中国科学院上海硅酸盐研究所碳化硅晶体项目部.碳化硅晶体生长与缺陷[M].北京:科学出版社,2012. Silicon Carbide Crystal Project Department of Shanghai Institute of Ceramics, Chinese Academy of Sciences. Silicon carbide crystal growth and defects[M]. Beijing: Science Press, 2012(in Chinese). [55] ZHAN S D, DONG B Y, WANG H Q, et al. A novel approach for bulk micromachining of 4H-SiC by tool-based electrolytic plasma etching in HF-free aqueous solution[J]. Journal of the European Ceramic Society, 2021, 41(10): 5075-5087. [56] ZIMMER K, EHRHARDT M, LORENZ P, et al. Etching of SiC-SiC-composites by a laser-induced plasma in a reactive gas[J]. Ceramics International, 2022, 48(1): 90-95. [57] TOH D, BUI P V, YAMAUCHI K, et al. Photoelectrochemical oxidation assisted catalyst-referred etching for SiC (0001) surface[J]. International Journal of Automation Technology, 2021, 15(1): 74-79. [58] YANG T L, KITA K. Considerations on the kinetic correlation between SiC nitridation and etching at the 4H-SiC(0001)/SiO2 interface in N2 and N2/H2 annealing[J]. Japanese Journal of Applied Physics, 2022, 61(SC): SC1077. [59] LI C, HE Z D, WANG Q D, et al. Performance improvement of PEDOT∶PSS/N-Si heterojunction solar cells by alkaline etching[J].Silicon, 2022, 14(5): 2299-2307. [60] KATSUNO M, OHTANI N, TAKAHASHI J, et al. Etching kinetics of α-SiC single crystals by molten KOH[J]. Materials Science Forum, 1998, 264/265/266/267/268: 837-840. [61] TANI K, FUJIMOTO T, KAMEI K, et al. Evolution of threading edge dislocations at earlier stages of PVT growth for 4H-SiC single crystals[J]. Materials Science Forum, 2016, 858: 73-76. [62] 苗瑞霞,张玉明,汤晓燕,等.SiC晶体缺陷的阴极荧光无损表征研究[J].光谱学与光谱分析,2010,30(3):702-705. MIAO R X, ZHANG Y M, TANG X Y, et al. The study of nondestructive defect characterization of SiC by cathodoluminescence[J]. Spectroscopy and Spectral Analysis, 2010, 30(3): 702-705(in Chinese). [63] 蒋建华.同步辐射X射线形貌术在晶体生长和缺陷研究中的应用[J].同步辐射装置用户科技论文集,2000(1):314-321. JIANG J H. Application of synchrotron radiation X-ray topography in crystal growth and defect study[J]. Journal of User Science and Technology of Synchrotron Radiation Equipment, 2000(1): 314-321(in Chinese). [64] RAGHOTHAMACHAR B, DUDLEY M, DHANARAJ G. X-ray topography techniques for defect characterization of crystals[M]//Springer Handbook of Crystal Growth. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 1425-1451. [65] EUN T H, YEO I G, KIM J Y, et al. Investigation on the threading dislocations formed by lattice misfits during initial stage of sublimation growth of 4H-SiC[J]. Materials Science Forum, 2020, 1004: 51-56. [66] BERWIAN P, KAMINZKY D, ROßHIRT K, et al. Imaging defect luminescence of 4H-SiC by ultraviolet-photoluminescence[J]. Solid State Phenomena, 2015, 242: 484-489. [67] LUO H, LI J J, YANG G, et al. Electronic and optical properties of threading dislocations in n-type 4H-SiC[J]. ACS Applied Electronic Materials, 2022, 4(4): 1678-1683. [68] FENG X F, ZANG Y. Raman scattering properties of structural defects in SiC[C]//Proceedings of the 2016 3rd International Conference on Mechatronics and Information Technology. April 9-10, 2016. Shenzhen, China, Paris, France: Atlantis Press, 2016. [69] YANG YING, LIN TAO, CHEN ZHIMING. Effect of growth gas flow rate on the defects of SiC single crystal[J]. Chinese Journal of Semiconductors, 2008,29(5):851-854. [70] 杨祥龙, 徐现刚, 王垚浩,等. 籽晶托及降低碳化硅单晶中穿透型位错密度的方法:CN202010198749.7[P].2020.06.12. YANG X L, XU X G, WANG Y H, et al. Method of seed support and reducing penetration dislocation density in silicon carbide single crystal: CN202010198749.7[P]. 2020.06.12(in Chinese). [71] CHEN X F, ZHANG F S, YANG X L, et al. Reduction of dislocation density of SiC crystals grown on seeds after H2 etching[J]. 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM), 2016: 1. [72] 李 赟. 降低碳化硅外延基平面位错密度的方法:CN201611158953.6[P].2019.11.22. LI Y. Method for reducing the dislocation density of silicon carbide epitaxial base plane: CN201611158953.6[P]. 2019.11.22(in Chinese). [73] MURAYAMA K, HORI T, HARADA S, et al. Two-step SiC solution growth for dislocation reduction[J]. Journal of Crystal Growth, 2017, 468: 874-878. [74] KOMATSU N, MITANI T, HAYASHI Y, et al. Application of defect conversion layer by solution growth for reduction of TSDs in 4H-SiC bulk crystals by PVT growth[J]. Materials Science Forum, 2019, 963: 71-74. [75] NAKAMURA D, GUNJISHIMA I, YAMAGUCHI S, et al. Ultrahigh-quality silicon carbide single crystals[J]. Nature, 2004, 430(7003): 1009-1012. [76] YAMAMOTO Y, HARADA S, SEKI K, et al. High-efficiency conversion of threading screw dislocations in 4H-SiC by solution growth[J]. Applied Physics Express, 2012, 5(11): 115501. [77] MANNING I, ZHANG J, THOMAS B, et al. Large area 4H SiC products for power electronic devices[J]. Materials Science Forum, 2016, 858: 11-14. [78] TOKUDA Y, HOSHINO N, KUNO H, et al. Fast 4H-SiC bulk growth by high-temperature gas source method[J]. Materials Science Forum, 2020, 1004: 5-13. [79] KOJIMA J, TOKUDA Y, MAKINO E, et al. Developing technologies of SiC gas source growth method[J]. Materials Science Forum, 2016, 858: 23-28. [80] MANNING I, MATSUDA Y, CHUNG G, et al. Progress in bulk 4H SiC crystal growth for 150 mm wafer production[J]. Materials Science Forum, 2020, 1004: 37-43. [81] POWELL A R, SUMAKERIS J J, KHLEBNIKOV Y, et al. Bulk growth of large area SiC crystals[J]. Materials Science Forum, 2016, 858: 5-10. [82] MUSOLINO M, XU X P, WANG H, et al. Paving the way toward the world’s first 200 mm SiC pilot line[J]. Materials Science in Semiconductor Processing, 2021, 135: 106088. |
[1] | 杨光, 刘晓双, 李佳君, 徐凌波, 崔灿, 皮孝东, 杨德仁, 王蓉. 4H碳化硅单晶中的位错[J]. 人工晶体学报, 2022, 51(9-10): 1673-1690. |
[2] | 杨祥龙, 陈秀芳, 谢雪健, 彭燕, 于国建, 胡小波, 王垚浩, 徐现刚. 8英寸导电型4H-SiC单晶的生长[J]. 人工晶体学报, 2022, 51(9-10): 1745-1748. |
[3] | 杨旖秋, 韩晓桐, 胡秀飞, 李斌, 彭燕, 王希玮, 胡小波, 徐现刚, 王笃福, 刘长江, 冯志红. 高温高压与CVD金刚石单晶衬底质量对比研究[J]. 人工晶体学报, 2022, 51(9-10): 1777-1784. |
[4] | 罗东, 贾伟, 王英民, 戴鑫, 贾志刚, 董海亮, 李天保, 王利忠, 许并社. p型4H-SiC单晶衬底表征及第一性原理计算[J]. 人工晶体学报, 2022, 51(7): 1169-1176. |
[5] | 兰凤仪, 杨名昊, 兰天, 张由飞, 李泳娇, 夏尊, 王修慧, 杨金龙. 具有碳化硅纳米线编织结构的氧化铝泡沫陶瓷的制备及性能研究[J]. 人工晶体学报, 2022, 51(7): 1275-1283. |
[6] | 冯银红, 沈桂英, 赵有文, 刘京明, 杨俊, 谢辉, 何建军, 王国伟. 无位错Te-GaSb(100)单晶抛光衬底的晶格完整性[J]. 人工晶体学报, 2022, 51(6): 1003-1011. |
[7] | 卢嘉铮, 张辉, 郑丽丽, 马远, 宋德鹏. 大尺寸电阻加热式碳化硅晶体生长热场设计与优化[J]. 人工晶体学报, 2022, 51(3): 371-384. |
[8] | 黄思丽, 谢泉, 张琴. P掺杂6H-SiC的第一性原理研究[J]. 人工晶体学报, 2022, 51(1): 49-55. |
[9] | 胡继超, 孟佳琦, 李丹, 贺小敏, 王曦, 许蓓, 蒲红斌. 低温热处理温度对SiC衬底上CuAlO2薄膜特性的影响[J]. 人工晶体学报, 2021, 50(9): 1662-1667. |
[10] | 开翠红, 王蓉, 杨德仁, 皮孝东. 基于碳化硅衬底的宽禁带半导体外延[J]. 人工晶体学报, 2021, 50(9): 1780-1795. |
[11] | 康森, 鲁雅荣, 石天虎, 滕斌, 宽军, 李璐, 郝文娟, 段斌斌. 改良泡生法生长720 kg级大尺寸蓝宝石晶体[J]. 人工晶体学报, 2021, 50(8): 1397-1401. |
[12] | 侯红臣, 郑旭鹏, 楼永伟, 程伟强, 陈建军. 成型压力对SiCnf增韧SiC陶瓷基复合材料微观结构和性能的影响[J]. 人工晶体学报, 2021, 50(8): 1525-1533. |
[13] | 罗昊, 张序清, 杨德仁, 皮孝东. 碳化硅单晶生长用高纯碳化硅粉体的研究进展[J]. 人工晶体学报, 2021, 50(8): 1562-1574. |
[14] | 陈晨, 赵堃, 韩焕鹏. 6英寸低位错锗单晶生长热场设计[J]. 人工晶体学报, 2021, 50(6): 979-986. |
[15] | 彭燕, 陈秀芳, 谢雪健, 徐现刚, 胡小波, 杨祥龙, 于国建, 王垚浩. 半绝缘碳化硅单晶衬底的研究进展[J]. 人工晶体学报, 2021, 50(4): 619-628. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||