[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. [2] ZHANG Y B, TAN Y W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature, 2005, 438(7065): 201-204. [3] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J].Nature, 2005, 438(7065): 197-200. [4] DU X, SKACHKO I, BARKER A, et al. Approaching ballistic transport in suspended graphene[J]. Nature Nanotechnology, 2008, 3(8): 491-495. [5] BERGER C, SONG Z M, LI X B, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312(5777): 1191-1196. [6] ZHANG W J, LIN C T, LIU K K, et al. Opening an electrical band gap of bilayer graphene with molecular doping[J]. ACS Nano, 2011, 5(9): 7517-7524. [7] SON J, LEE S, KIM S J, et al. Hydrogenated monolayer graphene with reversible and tunable wide band gap and its field-effect transistor[J]. Nature Communications, 2016, 7: 13261. [8] XIA C X, DU J, FANG L Z, et al. PtSe2/graphene hetero-multilayer: gate-tunable Schottky barrier height and contact type[J]. Nanotechnology, 2018, 29(46): 465707. [9] SHIM J, KANG D H, KIM Y, et al. Recent progress in van der Waals (vdW) heterojunction-based electronic and optoelectronic devices[J]. Carbon, 2018, 133: 78-89. [10] LIU Z, SONG L, ZHAO S Z, et al. Direct growth of graphene/hexagonal boron nitride stacked layers[J]. Nano Letters, 2011, 11(5): 2032-2037. [11] SUN M L, CHOU J P, REN Q Q, et al. Tunable Schottky barrier in van der Waals heterostructures of graphene and g-GaN[J]. Applied Physics Letters, 2017, 110(17): 173105. [12] PHUC H V, HIEU N N, HOI B D, et al. Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der Waals heterostructure[J]. Physical Chemistry Chemical Physics, 2018, 20(26): 17899-17908. [13] LU A K A, HOUSSA M, RADU I P, et al. Toward an understanding of the electric field-induced electrostatic doping in van der Waals heterostructures: a first-principles study[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7725-7734. [14] NIE Y F, HONG S, WALLACE R M, et al. Theoretical demonstration of the ionic barristor[J]. Nano Letters, 2016, 16(3): 2090-2095. [15] PHAM K D, HIEU N N, PHUC H V, et al. Layered graphene/GaS van der Waals heterostructure: controlling the electronic properties and Schottky barrier by vertical strain[J]. Applied Physics Letters, 2018, 113(17): 171605. [16] XIA C, XUE B, WANG T X, et al. Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures[J]. Applied Physics Letters, 2015, 107: 193107. [17] ZHANG F, LI W, MA Y Q, et al. Schottky barrier tuning of the graphene/SnS2 van der Waals heterostructures through electric field[J]. Solid State Communications, 2018, 271: 56-61. [18] GHORBANI-ASL M, BRISTOWE P D, KOZIOL K, et al. Effect of compression on the electronic, optical and transport properties of MoS2/graphene-based junctions[J]. 2D Materials, 2016, 3(2): 025018. [19] LU A Y, ZHU H Y, XIAO J, et al. Janus monolayers of transition metal dichalcogenides[J]. Nature Nanotechnology, 2017, 12(8): 744-749. [20] DUAN X D, WANG C, FAN Z, et al. Synthesis of WS2xSe2-2x alloy nanosheets with composition-tunable electronic properties[J]. Nano Letters, 2016, 16(1): 264-269. [21] DONG L, LOU J, SHENOY V B. Large In-plane and vertical piezoelectricity in Janus transition metal dichalchogenides[J]. ACS Nano, 2017, 11(8): 8242-8248. [22] ZHOU W Z, CHEN J Y, YANG Z X, et al. Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe[J]. Physical Review B, 2019, 99(7): 075160. [23] PALSGAARD M, GUNST T, MARKUSSEN T, et al. Stacked Janus device concepts: abrupt pn-junctions and cross-plane channels[J]. Nano Letters, 2018, 18(11): 7275-7281. [24] DENG S, LI L J, REES P. Graphene/MoXY heterostructures adjusted by interlayer distance, external electric field, and strain for tunable devices[J]. ACS Applied Nano Materials, 2019, 2(6): 3977-3988. [25] YU C, CHENG X X, WANG C Y, et al. Tuning the n-type contact of graphene on Janus MoSSe monolayer by strain and electric field[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 110: 148-152. [26] YU S Q, WEI W, LI F P, et al. Electronic properties of Janus MXY/graphene (M=Mo, W; X≠Y=S, Se) van der Waals structures: a first-principles study[J]. Physical Chemistry Chemical Physics, 2020, 22(44): 25675-25684. [27] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [28] CHEN H, ZHAO J F, HUANG J D, et al. Computational understanding of the structural and electronic properties of the GeS-graphene contact[J]. Physical Chemistry Chemical Physics, 2019, 21(14): 7447-7453. [29] JU L, BIE M, TANG X, et al. Janus WSSe monolayer: an excellent photocatalyst for overall water splitting[J]. ACS Applied Materials & Interfaces, 2020, 12(26): 29335-29343. [30] WANG S K, REN C D, TIAN H Y, et al. MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: a first-principles study[J]. Physical Chemistry Chemical Physics, 2018, 20(19): 13394-13399. [31] ZHANG W X, YIN Y, HE C. Lowering the Schottky barrier height of G/WSSe van der Waals heterostructures by changing the interlayer coupling and applying external biaxial strain[J]. Physical Chemistry Chemical Physics, 2020, 22(45): 26231-26240. [32] DIN H U, IDREES M, ALBAR A, et al. Rashba spin splitting and photocatalytic properties of GeC-MSSe (M=Mo, W) van der Waals heterostructures[J]. Physical Review B, 2019, 100(16): 165425. [33] GUO Q, WANG G X, PANDEY R, et al. Robust band gaps in the graphene/oxide heterostructure: SnO/graphene/SnO[J]. Physical Chemistry Chemical Physics: PCCP, 2018, 20(26): 17983-17989. [34] LV L L, SHEN Y Q, MA Y Y, et al. Schottky barrier modification of GaSSe/graphene heterojunctions based on density functional theory[J]. Journal of Physics D: Applied Physics, 2021, 54(15): 155104. [35] BEN AZIZA Z, PIERUCCI D, HENCK H, et al. Tunable quasiparticle band gap in few-layer GaSe/graphene van der Waals heterostructures[J]. Physical Review B, 2017, 96(3): 035407. [36] TONGAY S, FAN W, KANG J, et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers[J]. Nano Letters, 2014, 14(6): 3185-3190. [37] HU W, LI Z Y, YANG J L. Electronic and optical properties of graphene and graphitic ZnO nanocomposite structures[J]. The Journal of Chemical Physics, 2013, 138(12): 124706. [38] WANG X L, QUHE R G, LIU Z, et al. Interfacial properties of two-dimensional graphene/ZrS2 and ScS2/ZrS2 contacts[J]. Applied Surface Science, 2019, 476: 778-788. [39] MAK K F, LUI C H, SHAN J, et al. Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy[J]. Physical Review Letters, 2009, 102(25): 256405. |