[1] LIANG Z Z, KANDA H, JIA X, et al. Synthesis of diamond with high nitrogen concentration from powder catalyst-C-additive NaN3 by HPHT[J]. Carbon, 2006, 44(5): 913-917. [2] UMEZAWA H, NAGASE M, KATO Y, et al. High temperature application of diamond power device[J]. Diamond and Related Materials, 2012, 24: 201-205. [3] FANG S, MA HONGAN, CAI Z H, et al. Study on the characteristics of Ib diamond crystals synthesized with Fe3O4 doped in an Fe-Ni-C system[J]. CrystEngComm, 2020, 22(22): 3854-3862. [4] FANG C, JIA X P, CHEN N, et al. Crystal growth and characterization of hydrogen-doped single diamond with Fe(C5H5)2 additive[J]. Acta Physica Sinica, 2015, 64(12): 128101. [5] HUMBLE P. The structure and mechanism of formation of platelets in natural type Ia diamond[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 1982, 381(1780): 65-81. [6] GEIS M W, TWICHELL J C, EFREMOW N N, et al. Comparison of electric field emission from nitrogen-doped, type Ib diamond, and boron-doped diamond[J]. Applied Physics Letters, 1996, 68(16): 2294-2296. [7] 肖宏宇.优质克拉级金刚石大单晶的高温高压合成[D].长春:吉林大学,2010. XIAO H Y. Growth of high-quality large diamond single crystals in carats grade under HPHT[D]. Changchun: Jilin University, 2010(in Chinese). [8] KALISH R. The search for donors in diamond[J]. Diamond and Related Materials, 2001, 10(9/10): 1749-1755. [9] SIDOROV V A, EKIMOV E A, BAUER E D, et al. Superconductivity in boron-doped diamond[J]. Diamond and Related Materials, 2005, 14(3/4/5/6/7): 335-339. [10] EKIMOV E A, SIDOROV V A, BAUER E D, et al. Superconductivity in diamond[J]. Nature, 2004, 428(6982): 542-545. [11] YANG N J, YU S Y, MACPHERSON J V, et al. Conductive diamond: synthesis, properties, and electrochemical applications[J]. Chemical Society Reviews, 2019, 48(1): 157-204. [12] WOOD G F, ZVORISTE-WALTERS C E, MUNDAY M G, et al. High pressure high temperature synthesis of highly boron doped diamond microparticles and porous electrodes for electrochemical applications[J]. Carbon, 2021, 171: 845-856. [13] PICKETT W E. Negative electron affinity and low work function surface: cesium on oxygenated diamond (100)[J]. Physical Review Letters, 1994, 73(12): 1664-1667. [14] HEIM C, UREÑA DE VIVANCO M, RAJAB M, et al. Rapid inactivation of waterborne bacteria using boron-doped diamond electrodes[J]. International Journal of Environmental Science and Technology, 2015, 12(10): 3061-3070. [15] RAJAB M, HEIM C, LETZEL T, et al. Electrochemical disinfection using boron-doped diamond electrode-the synergetic effects of in situ ozone and free chlorine generation[J]. Chemosphere, 2015, 121: 47-53. [16] LI J H, WANG Q L, LIU Y F, et al. Boron/nitrogen co-doped diamond electrode for highly efficient electrochemistry detection of aniline[J]. Functional Diamond, 2021, 1(1): 135-142. [17] CHEN Y H, GAO X L, LIU G S, et al. Correlation of the role of boron concentration on the microstructure and electrochemical properties of diamond electrodes[J]. Functional Diamond, 2021, 1(1): 197-204. [18] LIU X B, CHEN X, SINGH D J, et al. Boron-oxygen complex yields n-type surface layer in semiconducting diamond[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(16): 7703-7711. [19] ZHOU D L, TANG L, GENG Y W, et al. First-principles calculation to n-type LiN co-doping and Li doping in diamond[J]. Diamond and Related Materials, 2020, 110: 108070. [20] LI Z B, LI Y, WANG Y, et al. Synergistic effect in B and N co-doped Ⅰb-type diamond single crystal: a density function theory calculation[J]. Canadian Journal of Physics, 2016, 94(9): 929-932. [21] WU Y Z, TONG J W, RUAN L X, et al. N-type diamond semiconductor induced by co-doping selenium and boron[J]. Computational Materials Science, 2021, 196: 110515. [22] 马利秋.高温高压下掺硼宝石级金刚石的合成[D].长春:吉林大学,2009. MA L Q. The synthesis of gem diamond crystals with boron-doped under HPHT[D]. Changchun: Jilin University, 2009 (in Chinese). [23] 苗辛原.硼氮共掺杂金刚石的高温高压合成与杂质行为研究[D].长春:吉林大学,2020. MIAO X Y. HPHT synthesis and impurities research of boron and nitrogen co-doped diamonds[D]. Changchun: Jilin University, 2020(in Chinese). [24] BERNARD M, BARON C, DENEUVILLE A. About the origin of the low wave number structures of the Raman spectra of heavily boron doped diamond films[J]. Diamond and Related Materials, 2004, 13(4/5/6/7/8): 896-899. [25] MORTET V, ŽIVCOVÁ Z V, TAYLOR A, et al. Insight into boron-doped diamond Raman spectra characteristic features[J]. Carbon, 2017, 115: 279-284. [26] BLANK V D, DENISOV V N, KIRICHENKO A N, et al. Raman scattering by defect-induced excitations in boron-doped diamond single crystals[J]. Diamond and Related Materials, 2008, 17(11): 1840-1843. [27] 赵占东.不同金属溶剂体系合成B-H共掺杂金刚石单晶[D].长春:吉林大学,2021. ZHAO Z D. Synthesis of B-H co-doped diamond single crystals in differentmetal solvent systems[D]. Changchun: Jilin University, 2021(in Chinese). [28] TEUKAM Z, CHEVALLIER J, SAGUY C, et al. Shallow donors with high n-type electrical conductivity in homoepitaxial deuterated boron-doped diamond layers[J]. Nature Materials, 2003, 2(7): 482-486. [29] 李 勇. 氢协同掺杂大尺寸金刚石单晶的高温高压合成与表征[D].长春:吉林大学,2013. LI Y. The synthesis and characterization of H co-doped diamond large single crystal under high pressure and high temperature[D]. Changchun: Jilin University, 2013(in Chinese). [30] MAVRIN B N, DENISOV V N, POPOVA D M, et al. Boron distribution in the subsurface region of heavily doped Ⅱb type diamond[J]. Physics Letters A, 2008, 372(21): 3914-3918. [31] BLANK V D, KUZNETSOV M S, NOSUKHIN S A, et al. The influence of crystallization temperature and boron concentration in growth environment on its distribution in growth sectors of type IIb diamond[J]. Diamond and Related Materials, 2007, 16(4/5/6/7): 800-804. [32] 周振翔.多元掺杂体系下金刚石大单晶合成的研究[D].长春:吉林大学,2015. ZHOU Z X. Study on the effect of several elements synergistic doped on the synthesis of large single diamond crystals[D]. Changchun: Jilin University, 2015(in Chinese). [33] BOGDANOWICZ R, RYL J. Structural and electrochemical heterogeneities of boron-doped diamond surfaces[J]. Current Opinion in Electrochemistry, 2022, 31: 100876. [34] LI R B. A molecular dynamics study of boron and nitrogen in diamond[J]. Solid State Communications, 2005, 135(3): 155-157. [35] MIAO X Y, CHEN L C, MA H A, et al. High-pressure and high-temperature treatment of N-rich B-doped diamonds[J]. CrystEngComm, 2019, 21(26): 3961-3965. [36] HU M H, BI N, LI S S, et al. Synthesis and characterization of boron and nitrogen co-doped diamond crystals under high pressure and high temperature conditions[J]. CrystEngComm, 2017, 19(31): 4571-4575. [37] DE WEERDT F, COLLINS A T. Determination of the C defect concentration in HPHT annealed type ⅠaA diamonds from UV-VIS absorption spectra[J]. Diamond and Related Materials, 2008, 17(2): 171-173. [38] MIAO X Y, MA H A, ZHANG Z F, et al. Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility[J]. Chinese Physics B, 2021, 30(6): 068102. [39] FANG C, JIA X P, SUN S S, et al. Studying the effect of hydrogen on diamond growth by adding C10H10Fe under high pressures and high temperatures[J]. High Pressure Research, 2016, 36(1): 42-54. [40] ZHANG H, LI S S, SU T C, et al. Large single crystal diamond grown in FeNiMnCo-S-C system under high pressure and high temperature conditions[J]. Chinese Physics B, 2016, 25(11): 118104. [41] ZHANG H, LI S S, SU T C, et al. Synthesis of N-type semiconductor diamonds with sulfur, boron co-doping in FeNiMnCo-C system at high pressure and high temperature[J]. Chinese Physics B, 2017, 26(5): 058102. [42] 陈 宁.硫(氢)掺杂金刚石单晶的高压合成及金刚石色心研究[D].长春:吉林大学,2018. CHEN N. Synthesis and color center research of S(H) doped diamond under high pressure[D]. Changchun: Jilin University, 2018(in Chinese). |