人工晶体学报 ›› 2022, Vol. 51 ›› Issue (5): 852-864.
所属专题: 超硬材料与特殊环境晶体生长技术
赵紫薇1,2, 高小武1,2, 曹文鑫2, 刘康2, 代兵2, 王永杰1,2, 朱嘉琦2
收稿日期:
2022-04-02
出版日期:
2022-05-15
发布日期:
2022-06-17
通信作者:
王永杰,博士,副教授。E-mail:yjwang@hit.edu.cn;朱嘉琦,博士,教授。E-mail:zhujq@hit.edu.cn
作者简介:
赵紫薇(1998—),女,河南省人,博士研究生。E-mail:zhaozw123@163.com; 王永杰,博士,哈尔滨工业大学深圳校区副教授,博士生导师,国防科技创新团队、工信部微纳光电信息系统理论与技术重点实验室、黑龙江省红外晶体及薄膜重点实验室骨干成员。博士毕业于美国密歇根大学,在加州大学伯克利分校杨培东院士团队做博士后,于2020年9月回国入职哈工大。主要研究金刚石、氮化镓等宽带隙半导体材料的制备工艺及其能源催化性能,开发了氮化镓/硅异质结构光电极,是国际上最早突破氮化镓光催化水制氢性能的研究者之一。相关研究成果已在Joule、Adv Energy Mater、Nano Lett、Angew、ACS Energy Lett、Nano Energy等杂志发表论文30余篇,主持国家自然科学基金、广东省自然科学基金等项目5项,申请发明专利4项,在全国催化学术会议、MRS、EMC、ACS等重要国际会议作报告10余次。曾获广东省优粤人才、广东省教育厅青年创新人才、深圳市海外高层次人才、教育部优秀海外留学生等。朱嘉琦,博士,哈尔滨工业大学航天学院教授、博士生导师。入选长江学者特聘教授、国家杰青、万人计划领军人才等人才项目,装备发展部装备维修工程、系统可靠性领域专家,科工局科技创新领域专家,国防科技创新团队带头人。担任中国材料研究学会极端材料与器件分会副主任、中国硅酸盐学会薄膜与涂层分会副理事长、中国仪表材料学会副理事长、中国机械工程学会表面工程分会副主任,《中国表面工程》《功能材料》《低温与真空》《人工晶体学报》《材料科学与工艺》《中国科技论文》等期刊编委。主要从事光电晶体、薄膜及器件研究,研制了适合大厚度(7 mm以上)单晶金刚石生长的高功率密度上馈式设备和适合大尺寸单晶及多晶生长的高均匀性下馈式设备。设计出了用于超高速率生长单晶金刚石的等离子体聚集装置,实现了生长速率大于100 μm/h 的单晶金刚石生长,研发多种金刚石功率器件、探测器件。获得中国青年科技奖、省青年五四奖章等荣誉,担任装备发展部领域专家,发表SCI 论文百余篇,出版专著《低维度金刚石及其光电器件》《碳光子学》《红外增透保护膜材料》,获授权发明专利82项(转让21项),国家技术发明二等奖 1 项,省技术发明一等奖和二等奖各 1 项。先后主持国家自然科学面上/重点基金、国家973课题、国家重点研发计划、重大国际合作、国防基础科研、装备预研计划、军品配套等科研项目。
基金资助:
ZHAO Ziwei1,2, GAO Xiaowu1,2, CAO Wenxin2, LIU Kang2, DAI Bing2, WANG Yongjie1,2, ZHU Jiaqi2
Received:
2022-04-02
Online:
2022-05-15
Published:
2022-06-17
摘要: 纳米金刚石具有优异的机械性能、导热性、生物相容性和结构可调性,在复合材料、电化学、催化、医学等领域的研究被不断开拓,工业上通过爆轰法实现纳米金刚石的大批量生产为其应用提供了基础。由于纳米金刚石表面结构复杂,需要精准调控以实现目标性能,对其表面功能化的研究具有重要的实际意义。本文首先介绍了对纳米金刚石进行各种表面修饰的方法,然后着重阐述其表面功能化研究对纳米金刚石在机械性能、催化性能和生物医学领域应用的影响,最后对纳米金刚石未来的研究方向进行了展望。
中图分类号:
赵紫薇, 高小武, 曹文鑫, 刘康, 代兵, 王永杰, 朱嘉琦. 纳米金刚石表面功能化对其性能影响的研究进展[J]. 人工晶体学报, 2022, 51(5): 852-864.
ZHAO Ziwei, GAO Xiaowu, CAO Wenxin, LIU Kang, DAI Bing, WANG Yongjie, ZHU Jiaqi. Research Progress on the Effects of Surface Functionalization of Nanodiamonds[J]. Journal of Synthetic Crystals, 2022, 51(5): 852-864.
[1] SCHNEIDER A, STEINMUELLER-NETHL D, ROY M, et al. Enhanced tribological performances of nanocrystalline diamond film[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(1): 40-50. [2] SAVVIDES N, BELL T J. Hardness and elastic modulus of diamond and diamond-like carbon films[J]. Thin Solid Films, 1993, 228(1/2): 289-292. [3] RAO T N, FUJISHIMA A. Recent advances in electrochemistry of diamond[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 384-389. [4] 姚凯丽,代 兵,乔鹏飞,等.纳米金刚石材料的研究进展[J].人工晶体学报,2019,48(11):1977-1989. YAO K L, DAI B, QIAO P F, et al. Research progress of nano-diamond materials[J]. Journal of Synthetic Crystals, 2019, 48(11): 1977-1989(in Chinese). [5] ZANG J B, WANG Y H, BIAN L Y, et al. Surface modification and electrochemical behaviour of undoped nanodiamonds[J]. Electrochimica Acta, 2012, 72: 68-73. [6] CHAUHAN S, JAIN N, NAGAICH U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: recent updates on in vivo study and patents[J]. Journal of Pharmaceutical Analysis, 2020, 10(1): 1-12. [7] EIVAZZADEH-KEIHAN R, MALEKI A, DE LA GUARDIA M, et al. Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review[J]. Journal of Advanced Research, 2019, 18: 185-201. [8] LIU Y Y, CHANG B M, CHANG H C. Nanodiamond-enabled biomedical imaging[J]. Nanomedicine, 2020, 15(16): 1599-1616. [9] TORELLI M D, NUNN N A, SHENDEROVA O A. A perspective on fluorescent nanodiamond bioimaging[J]. Small, 2019, 15(48): 1902151. [10] 孙贵磊.爆轰技术在纳米碳材料制备中的应用进展[J].工程爆破,2012,18(2):79-82. SUN G L. The using process of detonation technique in preparation of nano-carbon materials[J]. Engineering Blasting, 2012, 18(2): 79-82(in Chinese). [11] DANILENKO V V. On the history of the discovery of nanodiamond synthesis[J]. Physics of the Solid State, 2004, 46(4): 595-599. [12] MOCHALIN V N, SHENDEROVA O, HO D, et al. The properties and applications of nanodiamonds[J]. Nature Nanotechnology, 2012, 7(1): 11-23. [13] DUAN X G, TIAN W J, ZHANG H Y, et al. sp2/sp3 framework from diamond nanocrystals: a key bridge of carbonaceous structure to carbocatalysis[J]. ACS Catalysis, 2019, 9(8): 7494-7519. [14] OSSWALD S, YUSHIN G, MOCHALIN V, et al. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air[J]. Journal of the American Chemical Society, 2006, 128(35): 11635-11642. [15] KRUEGER A, LANG D. Functionality is key: recent progress in the surface modification of nanodiamond[J]. Advanced Functional Materials, 2012, 22(5): 890-906. [16] KRUEGER A. The structure and reactivity of nanoscale diamond[J]. Journal of Materials Chemistry, 2008, 18(13): 1485. [17] 苏党生.纳米碳催化[M].北京:科学出版社,2014. SU D S. Nano carbon catalysis[M]. Beijing: Science Press, 2014(in Chinese). [18] 李丹丹,陈 鑫,王 宏,等.三维拉曼成像技术用于纳米金刚石与细胞相互作用过程的研究[J].光谱学与光谱分析,2018,38(9):2770-2777. LI D D, CHEN X, WANG H, et al. Visualization of the interaction between NDs and cells with 3D Raman imaging[J]. Spectroscopy and Spectral Analysis, 2018, 38(9): 2770-2777(in Chinese). [19] ARNAULT J C, PETIT T, GIRARD H, et al. Surface chemical modifications and surface reactivity of nanodiamonds hydrogenated by CVD plasma[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13(24): 11481-11487. [20] ULLAH M, KAUSAR A, SIDDIQ M, et al. Reinforcing effects of modified nanodiamonds on the physical properties of polymer-based nanocomposites: a review[J]. Polymer-Plastics Technology and Engineering, 2015, 54(8): 861-879. [21] SHAKUN A, VUORINEN J, HOIKKANEN M, et al. Hard nanodiamonds in soft rubbers: past, present and future-a review[J]. Composites Part A: Applied Science and Manufacturing, 2014, 64: 49-69. [22] LIU Y, GU Z N, MARGRAVE J L, et al. Functionalization of nanoscale diamond powder: fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives[J]. Chemistry of Materials, 2004, 16(20): 3924-3930. [23] KHABASHESKU V N, MARGRAVE J L, BARRERA E V. Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications[J]. Diamond and Related Materials, 2005, 14(3/4/5/6/7): 859-866. [24] WANG Y H, HUANG H, ZANG J B, et al. Electrochemical behavior of fluorinated and aminated nanodiamond[J]. International Journal of Electrochemical Science, 2012, 7(8): 6807-6815. [25] NEITZEL I, MOCHALIN V N, NIU J, et al. Maximizing Young's modulus of aminated nanodiamond-epoxy composites measured in compression[J]. Polymer, 2012, 53(25): 5965-5971. [26] GOGOTSI Y. Nanomaterials Handbook[M]. Boca Raton: CRC Press, 2006. [27] MOCHALIN V N, GOGOTSI Y. Nanodiamond-polymer composites[J]. Diamond and Related Materials, 2015, 58: 161-171. [28] ASHASSI-SORKHABI H, ES'HAGHI M. Corrosion protection of mild steel by nano-colloidal polyaniline/nanodiamond composite coating in NaCl solution[J]. Journal of Coatings Technology and Research, 2014, 11(3): 371-380. [29] ASHASSI-SORKHABI H, BAGHERI R, REZAEI-MOGHADAM B. Corrosion protection properties of PPy-ND composite coating: sonoelectrochemical synthesis and design of experiment[J]. Journal of Materials Engineering and Performance, 2016, 25(2): 611-622. [30] ROUMELI E, PAVLIDOU E, AVGEROPOULOS A, et al. Factors controlling the enhanced mechanical and thermal properties of nanodiamond-reinforced cross-linked high density polyethylene[J]. The Journal of Physical Chemistry B, 2014, 118(38): 11341-11352. [31] MORIMUNE-MORIYA S, YADA S, KUROKI N, et al. Strong reinforcement effects of nanodiamond on mechanical and thermal properties of polyamide 66[J]. Composites Science and Technology, 2020, 199: 108356. [32] KIM S H, RHEE K Y, PARK S J. Amine-terminated chain-grafted nanodiamond/epoxy nanocomposites as interfacial materials: thermal conductivity and fracture resistance[J]. Composites Part B: Engineering, 2020, 192: 107983. [33] BEHLER K D, STRAVATO A, MOCHALIN V, et al. Nanodiamond-polymer composite fibers and coatings[J]. ACS Nano, 2009, 3(2): 363-369. [34] MORIMUNE S, KOTERA M, NISHINO T, et al. Poly(vinyl alcohol) nanocomposites with nanodiamond[J]. Macromolecules, 2011, 44(11): 4415-4421. [35] JEE A Y, LEE M. Thermal and mechanical properties of alkyl-functionalized nanodiamond composites[J]. Current Applied Physics, 2011, 11(5): 1183-1187. [36] MORIMUNE-MORIYA S, SALAJKOVA M, ZHOU Q, et al. Reinforcement effects from nanodiamond in cellulose nanofibril films[J]. Biomacromolecules, 2018, 19(7): 2423-2431. [37] JEE A Y, LEE M. Mechanical properties of polycarbonate and poly(methyl methacrylate) films reinforced with surface-functionalized nanodiamonds[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(1): 533-536. [38] ZHAO X X, WANG T, LI Y Y, et al. Polydimethylsiloxane/nanodiamond composite sponge for enhanced mechanical or wettability performance[J]. Polymers, 2019, 11(6): 948. [39] MOCHALIN V N, NEITZEL I, ETZOLD B J M, et al. Covalent incorporation of aminated nanodiamond into an epoxy polymer network[J]. ACS Nano, 2011, 5(9): 7494-7502. [40] NEITZEL I, MOCHALIN V, KNOKE I, et al. Mechanical properties of epoxy composites with high contents of nanodiamond[J]. Composites Science and Technology, 2011, 71(5): 710-716. [41] WANG Q, ZHANG J, SHI W, et al. Coordinating mechanical performance and fire safety of epoxy resin via functionalized nanodiamond[J]. Diamond and Related Materials, 2020, 108: 107964. [42] ZHANG Q X, NAITO K, TANAKA Y, et al. Grafting polyimides from nanodiamonds[J]. Macromolecules, 2008, 41(3): 536-538. [43] KHAN M, HAMID A, LI T H, et al. Surface optimization of detonation nanodiamonds for the enhanced mechanical properties of polymer/nanodiamond composites[J]. Diamond and Related Materials, 2020, 107: 107897. [44] YANG J H, WANG D E, HAN H X, et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Accounts of Chemical Research, 2013, 46(8): 1900-1909. [45] SU L X, CAO Y, HAO H S, et al. Emerging applications of nanodiamonds in photocatalysis[J]. Functional Diamond, 2021, 1(1): 93-109. [46] BAGHERI S, MUHD JULKAPLI N. Nano-diamond based photocatalysis for solar hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45(56): 31538-31554. [47] DU H, LIU Y N, SHEN C C, et al. Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production[J]. Chinese Journal of Catalysis, 2017, 38(8): 1295-1306. [48] LV X W, WENG C C, YUAN Z Y. Ambient ammonia electrosynthesis: current status, challenges, and perspectives[J]. ChemSusChem, 2020, 13(12): 3061-3078. [49] ZHU D, ZHANG L H, RUTHER R E, et al. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction[J]. Nature Materials, 2013, 12(9): 836-841. [50] KRAINSKY I L, ASNIN V M. Negative electron affinity mechanism for diamond surfaces[J]. Applied Physics Letters, 1998, 72(20): 2574-2576. [51] ZHU D, BANDY J A, LI S, et al. Amino-terminated diamond surfaces: photoelectron emission and photocatalytic properties[J]. Surface Science, 2016, 650: 295-301. [52] ZHANG L H, ZHU D, NATHANSON G M, et al. Selective photoelectrochemical reduction of aqueous CO2 to CO by solvated electrons[J]. Angewandte Chemie International Edition, 2014, 53(37): 9746-9750. [53] ZHANG L H, HAMERS R J. Photocatalytic reduction of CO2 to CO by diamond nanoparticles[J]. Diamond and Related Materials, 2017, 78: 24-30. [54] JANG D M, MYUNG Y, IM H S, et al. Nanodiamonds as photocatalysts for reduction of water and graphene oxide[J]. Chemical Communications (Cambridge, England), 2012, 48(5): 696-698. [55] KHAN M, HAYAT A, BABURAO MANE S K, et al. Functionalized nano diamond composites for photocatalytic hydrogen evolution and effective pollutant degradation[J]. International Journal of Hydrogen Energy, 2020, 45(53): 29070-29081. [56] LIN Z Y, XIAO J, LI L H, et al. Nanodiamond-embedded p-type copper (Ⅰ) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution[J]. Advanced Energy Materials, 2016, 6(4): 1501865. [57] 王建龙,初里冰.电离辐照技术在废水处理中的研究进展[J].环境工程学报,2017,11(2):653-672. WANG J L, CHU L B. Research progress of ionizing irradiation technology on wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 653-672(in Chinese). [58] PAN J J, GUO F, SUN H R, et al. Nanodiamond decorated 2D hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for enhanced photocatalytic activity[J]. Journal of Materials Science, 2021, 56(11): 6663-6675. [59] HUNGE Y M, YADAV A A, KHAN S, et al. Photocatalytic degradation of bisphenol A using titanium dioxide@nanodiamond composites under UV light illumination[J]. Journal of Colloid and Interface Science, 2021, 582: 1058-1066. [60] SU L X, LIU Z Y, YE Y L, et al. Heterostructured boron doped nanodiamonds@g-C3N4 nanocomposites with enhanced photocatalytic capability under visible light irradiation[J]. International Journal of Hydrogen Energy, 2019, 44(36): 19805-19815. [61] PASTRANA-MARTÍNEZ L M, MORALES-TORRES S, CARABINEIRO S A C, et al. Photocatalytic activity of functionalized nanodiamond-TiO2 composites towards water pollutants degradation under UV/Vis irradiation[J]. Applied Surface Science, 2018, 458: 839-848. [62] CHENG C Y, PEREVEDENTSEVA E, TU J S, et al. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling[J]. Applied Physics Letters, 2007, 90(16): 163903. [63] CHAO J I, PEREVEDENTSEVA E, CHUNG P H, et al. Nanometer-sized diamond particle as a probe for biolabeling[J]. Biophysical Journal, 2007, 93(6): 2199-2208. [64] HEBISCH E, HJORT M, VOLPATI D, et al. Nanostraw-assisted cellular injection of fluorescent nanodiamonds via direct membrane opening[J]. Small, 2021, 17(7): 2006421. [65] LIU K K, WANG C C, CHENG C L, et al. Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells[J]. Biomaterials, 2009, 30(26): 4249-4259. [66] SIMPSON D A, MORRISROE E, MCCOEY J M, et al. Non-neurotoxic nanodiamond probes for intraneuronal temperature mapping[J]. ACS Nano, 2017, 11(12): 12077-12086. [67] IGARASHI R, SUGI T, SOTOMA S, et al. Tracking the 3D rotational dynamics in nanoscopic biological systems[J]. Journal of the American Chemical Society, 2020, 142(16): 7542-7554. [68] MILLER B S, BEZINGE L, GLIDDON H D, et al. Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics[J]. Nature, 2020, 587(7835): 588-593. [69] HENS S C, CUNNINGHAM G, TYLER T, et al. Nanodiamond bioconjugate probes and their collection by electrophoresis[J]. Diamond and Related Materials, 2008, 17(11): 1858-1866. [70] MKANDAWIRE M, POHL A, GUBAREVICH T, et al. Selective targeting of green fluorescent nanodiamond conjugates to mitochondria in HeLa cells[J]. Journal of Biophotonics, 2009, 2(10): 596-606. [71] ZHAO L, XU Y H, QIN H M, et al. Platinum on nanodiamond: a promising prodrug conjugated with stealth polyglycerol, targeting peptide and acid-responsive antitumor drug[J]. Advanced Functional Materials, 2014, 24(34): 5348-5357. [72] XING Y, XIONG W, ZHU L, et al. DNA damage in embryonic stem cells caused by nanodiamonds[J]. ACS Nano, 2011, 5(3): 2376-2384. [73] ZHANG X Y, HU W B, LI J, et al. A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond[J]. Toxicology Research, 2012, 1(1): 62-68. [74] GUAN B, ZOU F, ZHI J F. Nanodiamond as the pH-responsive vehicle for an anticancer drug[J]. Small, 2010, 6(14): 1514-1519. [75] GAO G Y, LIU R Z, GUO Q Y, et al. The effect of carboxylated nanodiamonds on tumor cells migration[J]. Diamond and Related Materials, 2020, 105: 107809. [76] GUO Q Y, LI L, GAO G Y, et al. Nanodiamonds inhibit cancer cell migration by strengthening cell adhesion: implications for cancer treatment[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 9620-9629. [77] WU Y Z, ERMAKOVA A, LIU W N, et al. Programmable biopolymers for advancing biomedical applications of fluorescent nanodiamonds[J]. Advanced Functional Materials, 2015, 25(42): 6576-6585. [78] QIN S R, ZHAO Q, CHENG Z G, et al. Rare earth-functionalized nanodiamonds for dual-modal imaging and drug delivery[J]. Diamond and Related Materials, 2019, 91: 173-182. [79] 孙陶利,王 斌,彭 雁,等.羧基纳米金刚石作为抗肿瘤药物:鬼臼毒素胞内转运载体[J].药学学报,2013,48(1):149-154. SUN T L, WANG B, PENG Y, et al. Carboxyl nanodiamond as intracellular transporters of anticancer drug: podophyllotoxin[J]. Acta Pharmaceutica Sinica, 2013, 48(1): 149-154(in Chinese). [80] AKHTAR N, AKRAM M, ASIF H M, et al. Gene therapy: a review article[J]. Journal of Medicinal Plant Research, 2011, 5(18): 1812-1817. [81] LIM D G, RAJASEKARAN N, LEE D, et al. Polyamidoamine-decorated nanodiamonds as a hybrid gene delivery vector and siRNA structural characterization at the charged interfaces[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 31543-31556. |
[1] | 刘红, 刘花蓉, 范希梅. 氧化亚铜改性四针状氧化锌晶须表面及其光催化性能研究[J]. 人工晶体学报, 2024, 53(6): 1042-1050. |
[2] | 祁金阳, 王敏, 杨瑞杰, 张迎春, 宋志国. 一种新型苯磺酸-咪唑配合物的结构及催化性能研究[J]. 人工晶体学报, 2024, 53(2): 300-306. |
[3] | 张艳平, 高鹏, 李建保, 王敏, 万伟敏, 陈拥军. Ru掺杂Ni3N催化剂的电催化析氢反应[J]. 人工晶体学报, 2023, 52(9): 1698-1706. |
[4] | 刘晓慧, 李慧, 徐娜. 还原型磷钼酸盐构筑的多酸基超分子化合物的合成及电催化性能研究[J]. 人工晶体学报, 2023, 52(11): 2034-2040. |
[5] | 秦英恋, 秦建芳. 基于构象灵活的N-杂环配体构筑的3D拟卤化亚铜配合物的合成、结构和性质研究[J]. 人工晶体学报, 2022, 51(6): 1059-1068. |
[6] | 胡晓君, 郑玉浩, 陈成克, 鲁少华, 蒋梅燕, 李晓. 纳米金刚石薄膜的掺杂、表/界面调控及性能研究[J]. 人工晶体学报, 2022, 51(5): 865-874. |
[7] | 程学瑞, 皇甫战彪, 蔡玉乐, 武玺旺, 杨坤. 纳米金刚石的结构、光学性能和热稳定性研究[J]. 人工晶体学报, 2022, 51(5): 920-925. |
[8] | 刘晨曦, 潘多桥, 庞国旺, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. X/g-C3N4(X=g-C3N4、AlN及GaN)异质结光催化活性的理论研究[J]. 人工晶体学报, 2022, 51(3): 450-458. |
[9] | 郑文礼, 刘佳琪, 吴朝阳, 刘梦凡, 张恒强, 韩伟. 水热法制备二氧化锡/钨酸铋复合光催化材料及其催化活性研究[J]. 人工晶体学报, 2022, 51(3): 502-507. |
[10] | 李瑞, 张潇, 张璐璐, 谢芳霞, 张小超, 王雅文, 樊彩梅. 原位合成Bi3O4Br/Bi12O17Br2光催化剂及其对磺胺甲噁唑降解性能[J]. 人工晶体学报, 2021, 50(9): 1735-1744. |
[11] | 徐娜, 王金玲, 张众, 李晓慧, 常之晗. Keggin型多酸基超分子化合物H3[{H(4-AP)}6(PMoⅤ6MoⅥ6O40)]的结构和电催化性能[J]. 人工晶体学报, 2021, 50(11): 2123-2128. |
[12] | 孙楠, 陈鹏, 任有良. AgBr/TiO2纳米纤维的制备及其光催化性能研究[J]. 人工晶体学报, 2021, 50(1): 130-137. |
[13] | 赵静;何晓燕. 无定型NiCo氧化物的制备及氧析出电催化性能研究[J]. 人工晶体学报, 2020, 49(5): 896-901. |
[14] | 牛宇彤;郭贵宝. 炭吸附共沉淀钒酸铋纳米粉体的制备及其光催化性能研究[J]. 人工晶体学报, 2020, 49(4): 689-693. |
[15] | 柏林洋, 蔡照胜, 许琦. Ag3VO4基复合光催化剂降解有机污染物的研究进展[J]. 人工晶体学报, 2020, 49(2): 369-377. |
阅读次数 | ||||||
全文 156
|
|
|||||
摘要 |
|
|||||