[1] BAIKIE T, FANG Y N, KADRO J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3 NH3)PbI3 for solid-state sensitised solar cell applications[J]. Journal of Materials Chemistry A, 2013, 1(18): 5628. [2] STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341-344. [3] ZHAO Y X, NARDES A M, ZHU K. Solid-state mesostructured perovskite CH3 NH3PbI3 solar cells: charge transport, recombination, and diffusion length[J]. The Journal of Physical Chemistry Letters, 2014, 5(3): 490-494. [4] WANG M Y, SUN L, LIN Z Q, et al. p-n heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities[J]. Energy & Environmental Science, 2013, 6(4): 1211. [5] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. [6] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2: 591. [7] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012, 338(6107): 643-647. [8] SMITH I C, HOKE E T, SOLIS-IBARRA D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angewandte Chemie International Edition, 2014, 53(42): 11232-11235. [9] JAYAN K D, SEBASTIAN V, KURIAN J. Simulation and optimization studies on CsPbI3 based inorganic perovskite solar cells[J]. Solar Energy, 2021, 221: 99-108. [10] IM J H, JANG I H, PELLET N, et al. Growth of CH3 NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells[J]. Nature Nanotechnology, 2014, 9(11): 927-932. [11] MADAN J, SHIVANI, PANDEY R, et al. Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell[J]. Solar Energy, 2020, 197: 212-221. [12] 周毛毛,蒋 阳,谢于辉,等.纳米二氧化钛的制备、改性及其在聚合物基复合材料中的应用研究进展[J/OL].复合材料学报, 2021-11-08. DOI:10.13801/j.cnki.fhclxb.20211106.002. ZHOU M M, JIANG Y, XIE Y H, et al. Preparation and modification of nano-TiO2 and its application in polymer matrix composites research progress[J/OL]. Journal of composite materials,2021-11-08. DOI:10.13801/j.cnki. fhclxb. 20211106.002(in Chinese). [13] CHEN H N, XIANG S S, LI W P, et al. Inorganic perovskite solar cells: a rapidly growing field[J]. Solar RRL, 2018, 2(2): 1700188. [14] 李清流,甘永进,覃斌毅,等.基于Cu2O和SnO2的钙钛矿太阳电池数值模拟[J].电源技术,2020,44(9):1321-1323+1359. LI Q L, GAN Y J, QIN B Y, et al. Numerical simulation of perovskite solar cell based on Cu2O and SnO2[J]. Chinese Journal of Power Sources, 2020, 44(9): 1321-1323+1359(in Chinese). [15] 张 雨.铟镓锌氧化物薄膜制备及溅射靶材组织变化研究[D].郑州:郑州大学,2020. ZHANG Y. Study on preparation of indium-gallium-zinc oxide thin films and microstructure changes of sputtering target[D]. Zhengzhou: Zhengzhou University, 2020(in Chinese). [16] 许金桂.具有高开路电压的非富勒烯太阳电池研究[D].常州:常州大学,2021. XU J G. The study on non-fullerene solar cells with high open circuit voltage[D]. Changzhou: Changzhou University, 2021(in Chinese). [17] 甘永进,蒋曲博,覃斌毅,等.锡基钙钛矿太阳能电池载流子传输层的探讨[J].物理学报,2021,70(3):320-331. GAN Y J, JIANG Q B, QIN B Y, et al. Carrier transport layers of tin-based perovskite solar cells[J]. Acta Physica Sinica, 2021, 70(3): 320-331(in Chinese). [18] 李家森,梁春军,姬 超,等.在空穴传输层聚(3-己基噻吩)中添加1,8-二碘辛烷改善碳基钙钛矿太阳能电池的性能[J].物理学报,2021,70(19):198403. LI J S, LIANG C J, JI C, et al. Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene[J]. Acta Physica Sinica, 2021, 70(19): 198403(in Chinese). [19] 王爱丽,汪舒蓉,林 红,等.钙钛矿太阳电池的研究进展与关键挑战[J].硅酸盐学报,2021,49(7):1306-1322. WANG A L, WANG S R, LIN H, et al. Recent advances and critical challenges of perovskite solar cells[J]. Journal of the Chinese Ceramic Society, 2021, 49(7): 1306-1322(in Chinese). [20] LAKHDAR N, HIMA A. Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3[J]. Optical Materials, 2020, 99: 109517. [21] LIN L Y, JIANG L Q, LI P, et al. A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low-temperature processing[J]. Journal of Physics and Chemistry of Solids, 2019, 124: 205-211. [22] 张海良.基于无机p型碘化亚铜的钙钛矿电池制备与光电转换性能[D].济南:济南大学,2018. ZHANG H L. Preparation and photoelectric conversion performance of perovskite solar cells based on inorganic p-type cuprous iodide[D]. Jinan: University of Jinan, 2018(in Chinese). [23] CHAKRABORTY K, CHOUDHURY M G, PAUL S. Numerical study of Cs2TiX6 (X=Br-, I-, F- and Cl-) based perovskite solar cell using SCAPS-1D device simulation[J]. Solar Energy, 2019, 194: 886-892. [24] ZHU J Z, QI L H, DU H J, et al. Simulation study of the losses and influences of geminate and bimolecular recombination on the performances of bulk heterojunction organic solar cells[J]. Chinese Physics B, 2015, 24(10): 108501. [25] 潘冠福.采用化学气相沉积方法制备纯净的氧化亚铜[J].当代化工,2019,48(8):1704-1706+1710. PAN G F. Synthesis of pure Cu2O by CVD method[J]. Contemporary Chemical Industry, 2019, 48(8): 1704-1706+1710(in Chinese). [26] BURGELMAN M, NOLLET P, DEGRAVE S. Modelling polycrystalline semiconductor solar cells[J]. Thin Solid Films, 2000, 361/362: 527-532. [27] ALAM I, MOLLICK R, ASHRAF M A. Numerical simulation of Cs2AgBiBr6-based perovskite solar cell with ZnO nanorod and P3HT as the charge transport layers[J]. Physica B: Condensed Matter, 2021, 618: 413187. [28] DU H J, WANG W C, GU Y F. Simulation design of p-i-n-type all-perovskite solar cells with high efficiency[J]. Chinese Physics B, 2017, 26(2): 028803. [29] AZRI F, MEFTAH A, SENGOUGA N, et al. Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell[J]. Solar Energy, 2019, 181: 372-378. [30] 赵航航,袁吉仁,邓新华,等.MoS2/SnS异质结太阳能电池的模拟研究[J].人工晶体学报,2021,50(3):477-483. ZHAO H H, YUAN J R, DENG X H, et al. Simulation of MoS2/SnS heterojunction solar cells[J]. Journal of Synthetic Crystals, 2021, 50(3): 477-483(in Chinese). [31] DU H J, WANG W C, MA B, et al. Band structure adjustment of solar cells by gradient doping[J]. Materials Science in Semiconductor Processing, 2015, 40: 570-577. [32] EPERON G E, STRANKS S D, MENELAOU C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science, 2014, 7(3): 982. [33] HAO F, STOUMPOS C C, CHANG R P H, et al. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells[J]. Journal of the American Chemical Society, 2014, 136(22): 8094-8099. [34] MANCINI A, QUADRELLI P, AMOROSO G, et al. Synthesis, structural and optical characterization of APbX3 (A=methylammonium, dimethylammonium, trimethylammonium; X=I, Br, Cl) hybrid organic-inorganic materials[J]. Journal of Solid State Chemistry, 2016, 240: 55-60. [35] WANG G T, WANG D Y, SHI X B. Electronic structure and optical properties of Cs2AX′2X4(A=Ge, Sn, Pb; X′, X=Cl, Br, I)[J]. AIP Advances, 2015, 5(12): 127224. |