[1] KIM K H, PARK K C, MA D Y. Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering[J]. Journal of Applied Physics, 1997, 81(12): 7764-7772. [2] LAURENT S, FORGE D, PORT M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications[J]. Chemical Reviews, 2008, 108(6): 2064-2110. [3] 王彦平,惠贞贞,张雨露,等.核壳结构Fe3O4@ZnO纳米粒子的制备及电磁波吸收性能研究[J].人工晶体学报,2019,48(5):827-833. WANG Y P, HUI Z Z, ZHANG Y L, et al. Preparation and electromagnetic wave absorption properties of core-shell structured Fe3O4@ZnO nanoparticles[J]. Journal of Synthetic Crystals, 2019, 48(5): 827-833(in Chinese). [4] WEISS W, ZSCHERPEL D, SCHLÖGL R. On the nature of the active site for the ethylbenzene dehydrogenation over iron oxide catalysts[J]. Catalysis Letters, 1998, 52(3/4): 215-220. [5] REITZ J B, SOLOMON E I. Propylene oxidation on copper oxide surfaces: electronic and geometric contributions to reactivity and selectivity[J]. Journal of the American Chemical Society, 1998, 120(44): 11467-11478. [6] DEY S, DHAL G C, MOHAN D, et al. Advances in transition metal oxide catalysts for carbon monoxide oxidation: a review[J]. Advanced Composites and Hybrid Materials, 2019, 2(4): 626-656. [7] ZHOU K B, LI Y D. Catalysis based on nanocrystals with well-defined facets[J]. Angewandte Chemie International Edition, 2012, 51(3): 602-613. [8] LV B L, LIU Z Y, TIAN H, et al. Single-crystalline dodecahedral and octodecahedral α-Fe2O3 particles synthesized by a fluoride anion-assisted hydrothermal method[J]. Advanced Functional Materials, 2010, 20(22): 3987-3996. [9] OUYANG J J, PEI J, KUANG Q, et al. Supersaturation-controlled shape evolution of α-Fe2O3 nanocrystals and their facet-dependent catalytic and sensing properties[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12505-12514. [10] JIANG W, JI W J, AU C T. Surface/interfacial catalysis of (metal)/oxide system: structure and performance control[J]. ChemCatChem, 2018, 10(10): 2125-2163. [11] LI P X, QU L M, ZHANG C H, et al. Probing into the crystal plane effect on the reduction of α-Fe2O3 in CO by Operando Raman spectroscopy[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1558-1566. [12] ZHOU Z, YU Y Q, DING Z X, et al. Modulating high-index facets on anatase TiO2[J]. European Journal of Inorganic Chemistry, 2018, 2018(6): 683-693. [13] LIU L C, GU X R, JI Z Y, et al. Anion-assisted synthesis of TiO2 nanocrystals with tunable crystal forms and crystal facets and their photocatalytic redox activities in organic reactions[J]. The Journal of Physical Chemistry C, 2013, 117(36): 18578-18587. [14] WANG C H, SHI J, CUI X M, et al. The role of CO2 in dehydrogenation of ethylbenzene over pure α-Fe2O3 catalysts with different facets[J]. Journal of Catalysis, 2017, 345: 104-112. [15] HUA Q, CAO T, GU X K, et al. Crystal-plane-controlled selectivity of Cu2O catalysts in propylene oxidation with molecular oxygen[J]. Angewandte Chemie International Edition, 2014, 53(19): 4856-4861. [16] WU Z L, LI M J, OVERBURY S H. On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes[J]. Journal of Catalysis, 2012, 285(1): 61-73. [17] ANEGGI E, WIATER D, DE LEITENBURG C, et al. Shape-dependent activity of ceria in soot combustion[J]. ACS Catalysis, 2014, 4(1): 172-181. [18] LI Y, SHEN W J. Morphology-dependent nanocatalysts: rod-shaped oxides[J]. Chemical Society Reviews, 2014, 43(5): 1543-1574. [19] 李艳华,黄可龙,曾冬铭,等.各种形貌纳米Co3O4的制备及其应用[J].化学进展,2010,22(11):2119-2125. LI Y H, HUANG K L, ZENG D M, et al. Preparation and application of Co3O4 nanostructures with various morphologies[J]. Progress in Chemistry, 2010, 22(11): 2119-2125(in Chinese). [20] IRAVANI S, VARMA R S. Sustainable synthesis of cobalt and cobalt oxide nanoparticles and their catalytic and biomedical applications[J]. Green Chemistry, 2020, 22(9): 2643-2661. [21] CAI Y F, XU J, GUO Y, et al. Ultrathin, polycrystalline, two-dimensional Co3O4 for low-temperature CO oxidation[J]. ACS Catalysis, 2019, 9(3): 2558-2567. [22] ZHANG C M, ZHENG F Q, ZHANG Z W, et al. Fabrication of hollow pompon-like Co3O4 nanostructures with rich defects and high-index facet exposure for enhanced oxygen evolution catalysis[J]. Journal of Materials Chemistry A, 2019, 7(15): 9059-9067. [23] WANG F G, ZHANG L J, XU L L, et al. Low temperature CO oxidation and CH4 combustion over Co3O4 nanosheets[J]. Fuel, 2017, 203: 419-429. [24] PANG X Y, LIU C, LI D C, et al. Structure sensitivity of CO oxidation on Co3O4: a DFT study[J]. ChemPhysChem, 2013, 14(1): 204-212. [25] THORMÄHLEN P, SKOGLUNDH M, FRIDELL E, et al. Low-temperature CO oxidation over platinum and cobalt oxide catalysts[J]. Journal of Catalysis, 1999, 188(2): 300-310. [26] XIE X, LI Y, LIU Z Q, et al. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009, 458(7239): 746-749. [27] HU L H, SUN K Q, PENG Q, et al. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation[J]. Nano Research, 2010, 3(5): 363-368. [28] 刘清雅,刘振宇,李成岳.NH3在选择性催化还原NO过程中的吸附与活化[J].催化学报,2006,27(7):636-646. LIU Q Y, LIU Z Y, LI C Y. Adsorption and activation of NH3 during selective catalytic reduction of NO by NH3[J]. Chinese Journal of Catalysis, 2006, 27(7): 636-646(in Chinese). [29] MENG B, ZHAO Z B, WANG X Z, et al. Selective catalytic reduction of nitrogen oxides by ammonia over Co3O4 nanocrystals with different shapes[J]. Applied Catalysis B: Environmental, 2013, 129: 491-500. [30] HU L H, PENG Q, LI Y D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion[J]. Journal of the American Chemical Society, 2008, 130(48): 16136-16137. [31] YAO J X, SHI H, SUN D K, et al. Facet-dependent activity of Co3O4 catalyst for C3H8 combustion[J]. ChemCatChem, 2019, 11(22): 5570-5579. [32] BOLDYREV V V. Thermal decomposition of ammonium perchlorate[J]. Thermochimica Acta, 2006, 443(1): 1-36. [33] SHI J, WANG H X, LIU Y Q, et al. Rapid microwave-assisted hydrothermal synthesis of CeO2 octahedra with mixed valence states and their catalytic activity for thermal decomposition of ammonium perchlorate[J]. Inorganic Chemistry Frontiers, 2019, 6(7): 1735-1743. [34] ZHOU H, LV B L, WU D, et al. Synthesis and properties of octahedral Co3O4 single-crystalline nanoparticles enclosed by (111) facets[J]. CrystEngComm, 2013, 15(41): 8337. [35] ZHOU L Y, CAO S B, ZHANG L L, et al. Facet effect of Co3O4 nanocatalysts on the catalytic decomposition of ammonium perchlorate[J]. Journal of Hazardous Materials, 2020, 392: 122358. [36] SHI J, XING X Y, WANG H X, et al. Oxygen vacancy enriched Cu-WO3 hierarchical structures for the thermal decomposition of ammonium perchlorate[J]. Inorganic Chemistry Frontiers, 2022, 9(1): 136-145. [37] VARGHESE B, TEO C, ZHU Y, et al. Co3O4 nanostructures with different morphologies and their field-emission properties[J]. Advanced Functional Materials, 2007, 17(12): 1932-1939. [38] SEKAR S, PREETHI V, SARAVANAN S, et al. Excellent photocatalytic performances of Co3O4-AC nanocomposites for H2 production via wastewater splitting[J]. Chemosphere, 2022, 286: 131823. [39] ZHANG D E, REN L Z, HAO X Y, et al. Synthesis and photocatalytic property of multilayered Co3O4[J]. Applied Surface Science, 2015, 355: 547-552. [40] ZHOU X C, LIU Z, WANG Y F, et al. Facet effect of Co3O4 nanocrystals on visible-light driven water oxidation[J]. Applied Catalysis B: Environmental, 2018, 237: 74-84. [41] 王会香,姜 东,吴 东,等.TiO2光催化还原CO2[J].化学进展,2012,24(11):2116-2123. WANG H X, JIANG D, WU D, et al. Photocatalytic reduction of CO2 on TiO2 catalysts[J]. Progress in Chemistry, 2012, 24(11): 2116-2123(in Chinese). [42] GAO C, MENG Q Q, ZHAO K, et al. Co3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2[J]. Advanced Materials, 2016, 28(30): 6485-6490. [43] QI L, WANG M, LI X H. Graphene-induced growth of Co3O4 nanoplates with modulable oxygen vacancies for improved OER properties[J]. CrystEngComm, 2021, 23(45): 7928-7931. [44] TANG D, MA Y F, LIU Y, et al. Amorphous three-dimensional porous Co3O4 nanowire network toward superior OER catalysis by lithium-induced[J]. Journal of Alloys and Compounds, 2022, 893: 162287. [45] CHEN Z, KRONAWITTER C X, KOEL B E. Facet-dependent activity and stability of Co3O4 nanocrystals towards the oxygen evolution reaction[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(43): 29387-29393. [46] LIU L, JIANG Z Q, FANG L, et al. Probing the crystal plane effect of Co3O4 for enhanced electrocatalytic performance toward efficient overall water splitting[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 27736-27744. [47] DING Y, WANG Y, SU L, et al. Electrospun Co3O4 nanofibers for sensitive and selective glucose detection[J]. Biosensors and Bioelectronics, 2010, 26(2): 542-548. [48] KUNG C W, LIN C Y, LAI Y H, et al. Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose[J]. Biosensors and Bioelectronics, 2011, 27(1): 125-131. [49] WU K H, LENG X, GENTLE I R, et al. Enhanced electroactivity of facet-controlled Co3O4 nanocrystals for enzymeless biosensing[J]. Journal of Materials Science & Technology, 2016, 32(1): 24-27. [50] MU J S, WANG Y, ZHAO M, et al. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles[J]. Chemical Communications, 2012, 48(19): 2540-2542. [51] MU J S, ZHANG L, ZHAO G Y, et al. The crystal plane effect on the peroxidase-like catalytic properties of Co3O4 nanomaterials[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(29): 15709-15716. [52] SUN H Y, LV H S. Facet engineering of nano-Co3O4 for catalytic and gas sensor performance: a mechanism insight[J]. Journal of Alloys and Compounds, 2020, 823: 153742. |