[1] BELLO M M, ABDUL RAMAN A A, ASGHAR A. A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment[J]. Process Safety and Environmental Protection, 2019, 126: 119-140. [2] CHEN J X, ZHU L Z. Catalytic degradation of Orange Ⅱ by UV-Fenton with hydroxyl-Fe-pillared bentonite in water[J]. Chemosphere, 2006, 65(7): 1249-1255. [3] PANIZZA M, CERISOLA G. Electro-Fenton degradation of synthetic dyes[J]. Water Research, 2009, 43(2): 339-344. [4] 任百祥.超声-Fenton高级氧化降解染料工业废水的研究[J].环境工程学报,2010,4(4):809-812. REN B X. Research on degradation of dye industry wastewater by ultrasonic-Fenton process[J]. Chinese Journal of Environmental Engineering, 2010, 4(4): 809-812(in Chinese). [5] PAPAILIAS I, TODOROVA N, GIANNAKOPOULOU T, et al. Photocatalytic activity of modified g-C3N4/TiO2 nanocomposites for NOx removal[J]. Catalysis Today, 2017, 280: 37-44. [6] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271. [7] WANG C, ZHU W S, XU Y H, et al. Preparation of TiO2/g-C3N4 composites and their application in photocatalytic oxidative desulfurization[J]. Ceramics International, 2014, 40(8): 11627-11635. [8] HUANG Z, JIA S, WEI J, et al. A visible light active, carbon-nitrogen-sulfur co-doped TiO2/g-C3N4 Z-scheme heterojunction as an effective photocatalyst to remove dye pollutants[J]. RSC Advances, 2021, 11(27): 16747-16754. [9] WEI Z, LIANG F F, LIU Y F, et al. Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4 hybrid heterostructure thin film[J]. Applied Catalysis B: Environmental, 2017, 201: 600-606. [10] GAO Y, LIN J Y, ZHANG Q Z, et al. Facile synthesis of heterostructured YVO4/g-C3N4/Ag photocatalysts with enhanced visible-light photocatalytic performance[J]. Applied Catalysis B: Environmental, 2018, 224: 586-593. [11] 胡金娟,马春雨,王佳琳,等.GO/TiO2-g-C3N4纳米复合材料的制备及可见光催化性能[J].无机化学学报,2020,36(12):2240-2248. HU J J, MA C Y, WANG J L, et al. Preparation and photocatalytic properties of GO/TiO2-g-C3N4 nanocomposites[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(12): 2240-2248(in Chinese). [12] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir, 2009, 25(17): 10397-10401. [13] DONG F, WU L W, SUN Y J, et al. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts[J]. Journal of Materials Chemistry, 2011, 21(39): 15171. [14] LIU H, JIN Z T, XU Z Z, et al. Fabrication of ZnIn2S4-g-C3N4 sheet-on-sheet nanocomposites for efficient visible-light photocatalytic H2-evolution and degradation of organic pollutants[J]. RSC Advances, 2015, 5(119): 97951-97961. [15] QIU Y, GAO L. Chemical synthesis of turbostratic carbon nitride, containing C-N crystallites, at atmospheric pressure[J]. Chemical Communications, 2003(18): 2378-2379. [16] 曹宇辉,佟宇飞,张 健,等.石墨相氮化碳的红外辅助微波法制备及光催化固氮性能[J].高等学校化学学报,2016,37(7):1357-1363. CAO Y H, TONG Y F, ZHANG J, et al. Infrared ray assisted microwave synthesis of graphitic carbon nitride and its nitrogen photofixation ability[J]. Chemical Journal of Chinese Universities, 2016, 37(7): 1357-1363(in Chinese). [17] YANG L, KRUSE B. Revised kubelka-munk theory. I. theory and application[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2004, 21(10): 1933-1941. [18] 张健伟,苑 鹏,王建桥,等.Ce掺杂的CNTs-TiO2光催化剂制备及其NO氧化性能[J].环境工程学报,2020,14(7):1852-1861. ZHANG J W, YUAN P, WANG J Q, et al. Preparation of Ce doped CNTs-TiO2 photocatalyst and its NO oxidation performance[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1852-1861(in Chinese). [19] DING N, ZHANG L S, ZHANG H Y, et al. Microwave-assisted synthesis of ZnIn2S4/g-C3N4 heterojunction photocatalysts for efficient visible light photocatalytic hydrogen evolution[J]. Catalysis Communications, 2017, 100: 173-177. |