人工晶体学报 ›› 2022, Vol. 51 ›› Issue (9-10): 1573-1587.
赵呈春1, 张沛雄1,2, 李善明1, 房倩楠1, 徐民1, 陈振强2, 杭寅1
收稿日期:
2022-07-19
出版日期:
2022-10-15
发布日期:
2022-11-02
通信作者:
张沛雄,副研究员。E-mail:pxzhang@jnu.edu.cn
作者简介:
赵呈春(1985—),男,安徽省人,博士,副研究员。E-mail:zhaocc205@siom.ac.cn。赵呈春,中国科学院上海光学精密机械研究所副研究员,博士生导师。中国稀土学会稀土晶体专业委员会委员、《人工晶体学报》《应用技术学报》青年编委。主要从事光电子功能材料研究工作,主要包括稀土离子掺杂氟化物激光晶体、钛宝石晶体、金刚石等生长、光学特性和激光性能,以及纳米孔无机膜、表面等离激元纳米光子学等,主持承担国家自然科学基金、JKW领域基金、上海光机所自主部署、博士后基金等项目,发表SCI论文30余篇,申请专利20余项。ZHAO Chengchun1, ZHANG Peixiong1,2, LI Shanming1, FANG Qiannan1, XU Min1, CHEN Zhenqiang2, HANG Yin1
Received:
2022-07-19
Online:
2022-10-15
Published:
2022-11-02
摘要: 稀土离子掺杂氟化物晶体具有宽透光波段高透过率、低声子能量、长荧光寿命、负热光系数等优良特性,可以产生从紫外到中红外波段激光,是一类重要的激光增益介质。本文综述了本团队在稀土离子掺杂LiLuF4、LiYF4、BaY2F8、LaF3、PbF2、CeF3等氟化物晶体生长、光学和激光性能等方面的研究进展,总结了稀土离子共掺敏化、退激活、能级耦合调控以及多离子发光等方面的研究工作,展望了稀土离子掺杂氟化物激光晶体的研究发展趋势。
中图分类号:
赵呈春, 张沛雄, 李善明, 房倩楠, 徐民, 陈振强, 杭寅. 稀土离子掺杂氟化物激光晶体研究进展[J]. 人工晶体学报, 2022, 51(9-10): 1573-1587.
ZHAO Chengchun, ZHANG Peixiong, LI Shanming, FANG Qiannan, XU Min, CHEN Zhenqiang, HANG Yin. Development of Rare-Earth Ion Doped Fluoride Laser Crystal[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(9-10): 1573-1587.
[1] GATTASS R R, MAZUR E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2(4): 219-225. [2] WALSH B M, LEE H R, BARNES N P. Mid infrared lasers for remote sensing applications[J]. Journal of Luminescence, 2016, 169: 400-405. [3] LI W Q, GAN Z B, YU L H, et al. 339 J high-energy Ti∶sapphire chirped-pulse amplifier for 10 PW laser facility[J]. Optics Letters, 2018, 43(22): 5681-5684. [4] OKADA F, TOGAWA S, OHTA K, et al. Solid-state ultraviolet tunable laser: a Ce3+ doped LiYF4 crystal[J]. Journal of Applied Physics, 1994, 75(1): 49-53. [5] MA C Q, ZHANG Y, GUO J W, et al. A 3.9 μm Ho3+∶BaY2F8 laser directly pumped by laser diodes[J]. Electronics Letters, 2021, 57(20): 779-781. [6] LIU H L, ZHAO Z X, XIA J, et al. Tunable Pr3+∶LiYF4 lasers in the green-red spectral region[J]. Journal of Applied Physics, 2021, 129(8): 083102. [7] SALAÜN S, FORNONI M T, BULOU A, et al. Lattice dynamics of fluoride scheelites: I. Raman and infrared study of LiYF4 and LiLnY4 (Ln∶Ho, Er, Tm and Yb)[J]. Journal of Physics: Condensed Matter, 1997, 9(32): 6941-6956. [8] AUZEL F, PELLÉ F. Bottleneck in multiphonon nonradiative transitions[J]. Physical Review B, 1997, 55(17): 11006-11009. [9] SOROKIN P P, STEVENSON M J. Stimulated infrared emission from trivalent uranium[J]. Physical Review Letters, 1960, 5(12): 557-559. [10] KAISER W, GARRETT C G B, WOOD D L. Fluorescence and optical maser effects in CaF2∶Sm++[J]. Physical Review, 1961, 123(3): 766-776. [11] KAMINSKII A A. Laser crystals and ceramics: recent advances[J]. Laser & Photonics Review, 2007, 1(2): 93-177. [12] NIE H K, ZHANG P X, ZHANG B T, et al. Diode-end-pumped Ho, Pr∶LiLuF4 bulk laser at 2.95 μm[J]. Optics Letters, 2017, 42(4): 699-702. [13] ŠVEJKAR R, ŠULC J, NĚMEC M, et al. Compact diode-pumped CW and Q-switched 2.8 μm Er∶YLF laser[J]. Josa B, 2021, 38(8): B26-B29. [14] SIDERS, GALVIN, ERLANDSON, et al. Wavelength scaling of laser Wakefield acceleration for the EuPRAXIA design point[J]. Instruments, 2019, 3(3): 44. [15] TAMER I, REAGAN B A, GALVIN T, et al. Demonstration of a compact, multi-joule, diode-pumped Tm∶YLF laser[J]. Optics Letters, 2021, 46(20): 5096-5099. [16] WANG C, WEI H, WANG J F, et al. 1 J, 1 Hz lamp-pumped high-gain Nd∶phosphate glass laser amplifier[J]. Chinese Optics Letters, 2017, 15(1): 011401. [17] QIN Z P, XIE G Q, MA J, et al. Generation of 103 fs mode-locked pulses by a gain linewidth-variable Nd, Y∶CaF2 disordered crystal[J]. Optics Letters, 2014, 39(7): 1737-1739. [18] ZHU J F, ZHANG L J, GAO Z Y, et al. Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser[J]. Laser Physics Letters, 2015, 12(3): 035801. [19] METZ P W, HASSE K, PARISI D, et al. Continuous-wave Pr3+∶BaY2F8 and Pr3+∶LiYF4 lasers in the cyan-blue spectral region[J]. Optics Letters, 2014, 39(17): 5158-5161. [20] OSTROUMOV V, SEELERT W. 1 W of 261 nm CW generation in a Pr3+∶LiYF4 laser pumped by an optically pumped semiconductor laser at 479 nm[C]//Lasers and Applications in Science and Engineering. Proc SPIE 6871, Solid State Lasers XVII: Technology and Devices, San Jose, California, USA. 2008, 6871: 450-453. [21] LIN X J, ZHU Y, JI S H, et al. Highly efficient LD-pumped 607 nm high-power CW Pr3+∶YLF lasers[J]. Optics & Laser Technology, 2020, 129: 106281. [22] LIN X J, CHEN M P, FENG Q C, et al. LD-pumped high-power CW Pr3+∶YLF laguerre-Gaussian lasers at 639 nm[J]. Optics & Laser Technology, 2021, 142: 107273. [23] LUO S Y, YAN X G, CUI Q, et al. Power scaling of blue-diode-pumped Pr∶YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm[J]. Optics Communications, 2016, 380: 357-360. [24] SOTTILE A, PARISI D, TONELLI M. Multiple polarization orange and red laser emissions with Pr∶BaY2Fs[J]. Optics Express, 2014, 22(11): 13784-13791. [25] YU H, QIAN X B, GUO L Y, et al. Pr∶Ca1-xRxF2+x (R=Y or Gd) crystals: modulated blue, orange and red emission spectra with the proportion of R3+ ions[J]. Optical Materials, 2018, 78: 88-93. [26] KRÄNKEL C, MARZAHL D T, MOGLIA F, et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers[J]. Laser & Photonics Reviews, 2016, 10(4): 548-568. [27] CASTELLANO-HERNÁNDEZ E, KALUSNIAK S, METZ P W, et al. Diode-pumped laser operation of Tb 3+∶LiLuF4 in the green and yellow spectral range[J]. Laser & Photonics Reviews, 2020, 14(2): 1900229. [28] DUBINSKII M A, CEFALAS A C, SARANTOPOULOU E, et al. Efficient LaF3∶Nd3+-based vacuum-ultraviolet laser at 172 nm[J]. Josa B, 1992, 9(7): 1148-1150. [29] COUTTS D W, MCGONIGLE A J S. Cerium-doped fluoride lasers[J]. IEEE Journal of Quantum Electronics, 2004, 40(10): 1430-1440. [30] VOLPI A, KRÄMER K W, BINER D, et al. Bridgman growth of laser-cooling-grade LiLuF4∶Yb3+ single crystals[J]. Crystal Growth & Design, 2021, 21(4): 2142-2153. [31] HEHLEN M P, MENG J W, ALBRECHT A R, et al. First demonstration of an all-solid-state optical cryocooler[J]. Light: Science & Applications, 2018, 7: 15. [32] YANG Z, MENG J W, ALBRECHT A R, et al. Radiation-balanced thin-disk lasers in Yb∶YAG and Yb∶YLF (conference presentation)[C]//SPIE OPTO. Proc SPIE 10936, Photonic Heat Engines: Science and Applications, San Francisco, California, USA. 2019, 10936: 109360O. [33] ROGIN P, HULLIGER J. Liquid phase epitaxy of LiYF4[J]. Journal of Crystal Growth, 1997, 179(3/4): 551-558. [34] THOMA R E, BRUNTON G D, PENNEMAN R A, et al. Equilibrium relations and crystal structure of lithium fluorolanthanate phases[J]. Inorganic Chemistry, 1970, 9(5): 1096-1101. [35] ZHANG P X, YIN J G, ZHANG B T, et al. Intense 2.8 μm emission of Ho3+ doped PbF2 single crystal[J]. Optics Letters, 2014, 39(13): 3942-3945. [36] LAIHO R, LAKKISTO M. Investigation of the refractive indices of LaF3, CeF3, PrF3 and NdF3[J]. Philosophical Magazine B, 1983, 48(2): 203-207. [37] VASYLIEV V, VILLORA E G, NAKAMURA M, et al. UV-visible Faraday rotators based on rare-earth fluoride single crystals: LiREF4 (RE=Tb, Dy, Ho, Er and Yb), PrF3 and CeF3[J]. Optics Express, 2012, 20(13): 14460-14470. [38] AGGARWAL R L, RIPIN D J, OCHOA J R, et al. Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range[J]. Journal of Applied Physics, 2005, 98(10): 103514. [39] KLEIN P H, CROFT W J. Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77°-300°K[J]. Journal of Applied Physics, 1967, 38(4): 1603-1607. [40] AGGARWAL I D, SHAW L B, SANGHERA J S. Chalcogenide glass fiber-based MID-IR sources and applications[C]//Lasers and Applications in Science and Engineering. Proc SPIE 6453, Fiber Lasers Ⅳ: Technology, Systems, and Applications, San Jose, California, USA. 2007, 6453: 232-241. [41] PRATISTO H, FRENZ M, ITH M, et al. Temperature and pressure effects during erbium laser stapedotomy[J]. Lasers in Surgery and Medicine, 1996, 18(1): 100-108. [42] VODOPYANOV K L. Mid-infrared optical parametric generator with extra-wide (3-19-μm) tunability: applications for spectroscopy of two-dimensional electrons in quantum wells[J]. Josa B, 1999, 16(9): 1579-1586. [43] GODARD A. Infrared (2-12 μm) solid-state laser sources: a review[J]. Comptes Rendus Physique, 2007, 8(10): 1100-1128. [44] WANG J T, CHENG T Q, WANG L, et al. Compensation of strong thermal lensing in an LD side-pumped high-power Er∶YSGG laser[J]. Laser Physics Letters, 2015, 12(10): 105004. [45] RABINOVICH W S, BOWMAN S R, FELDMAN B J, et al. Tunable laser pumped 3 μm Ho∶YAlO3 laser[J]. IEEE Journal of Quantum Electronics, 1991, 27(4): 895-897. [46] DJEU N, HARTWELL V E, KAMINSKII A A, et al. Room-temperature 3.4 μm Dy∶BaYb2F8 laser[J]. Optics Letters, 1997, 22(13): 997-999. [47] SANDROCK T, DIENING A, HUBER G. Laser emission of erbium-doped fluoride bulk glasses in the spectral range from 2.7 to 2.8 μm[J]. Optics Letters, 1999, 24(6): 382-384. [48] ZHANG P X, HANG Y, LI Z, et al. Sensitization and deactivation effects of Nd3+ on the Ho3+∶3.9 μm emission in a PbF2 crystal[J]. Optics Letters, 2017, 42(13): 2559-2562. [49] WANG Y, LI J F, ZHU Z J, et al. Mid-infrared emission in Dy∶YAlO3 crystal[J]. Optical Materials Express, 2014, 4(6): 1104-1111. [50] ZHANG P X, ZHANG B T, HONG J Q, et al. Enhanced emission of 2.86 μm from diode-pumped Ho3+/Yb3+-codoped PbF2 crystal[J]. Optics Express, 2015, 23(4): 3920-3927. [51] ZHANG P X, HANG Y, ZHANG L H. Deactivation effects of the lowest excited state of Ho3+ at 2.9 μm emission introduced by Pr3+ ions in LiLuF4 crystal[J]. Optics Letters, 2012, 37(24): 5241-5243. [52] LI S M, ZHANG L H, HE M Z, et al. Effective enhancement of 2.87 μm fluorescence via Yb3+ in Ho3+∶LaF3 laser crystal[J]. Journal of Luminescence, 2018, 203: 730-734. [53] LI S M, ZHANG L H, HE M Z, et al. Nd3+ as effective sensitizing and deactivating ions for the 2.87 μm lasers in Ho3+ doped LaF3 crystal[J]. Journal of Luminescence, 2019, 208: 63-66. [54] LI X, ZHANG P X, ZHU S Q, et al. Enhanced 2.75 μm emissions of Er3+ via Eu3+ deactivation in PbF2 crystal[J]. Journal of Luminescence, 2019, 210: 164-168. [55] WANG Y H, ZHANG P X, LI X, et al. Spectroscopy and energy transfer mechanism of Tb3+ strengthened Er3+ 27 μm emission in PbF2 crystal[J]. Optical Materials Express, 2018, 9(1): 13. [56] LI X, ZHANG P X, YIN H, et al. Sensitization and deactivation effects of Nd3+ on the Er3+: 2.7 μm emission in PbF2 crystal[J]. Optical Materials Express, 2019, 9(4): 1698-1708. [57] LI S M, ZHANG L H, ZHANG P X, et al. Nd3+ as effective sensitization and deactivation ions in Nd, Er∶LaF3 crystal for the 2.7 μm lasers[J]. Journal of Alloys and Compounds, 2020, 827: 154268. [58] WANG Y H, JIANG C, ZHANG P X, et al. Bandwidth enhancement of 3 μm emission and energy transfer mechanism in Yb3+/Ho3+/Dy3+ co-doped PbF2 crystal[J]. Journal of Luminescence, 2019, 212: 160-165. [59] WANG Y H, ZHANG P X, ZHU S Q, et al. Broadened effect of Dy around 3 μm of Yb/Er/Dy∶PbF2 crystal for broadband tunable lasers[J]. Journal of the American Ceramic Society, 2020, 103(8): 4445-4452. [60] HUANG X B, WANG Y H, ZHANG P X, et al. Efficiently strengthen and broaden 3 μm fluorescence in PbF2 crystal by Er3+/Ho3+ as co-luminescence centers and Pr3+ deactivation[J]. Journal of Alloys and Compounds, 2019, 811: 152027. [61] FAN M Q, LI T, LI G Q, et al. Passively Q-switched Ho, Pr∶LiLuF4 laser with graphitic carbon nitride nanosheet film[J]. Optics Express, 2017, 25(11): 12796-12803. [62] NIE H K, ZHANG P X, ZHANG B T, et al. Watt-level continuous-wave and black phosphorus passive Q-switching operation of Ho3+, Pr3+∶LiLuF4 bulk laser at 2.95 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-5. [63] YANG Y L, NIE H K, ZHANG B T, et al. Passively Q-switched mode-locked Ho, Pr∶LiLuF4 laser operating at 2.9 μm with semiconductor saturable absorber mirror[J]. Applied Physics Express, 2018, 11(11): 112704. [64] GUO L, LI T, ZHANG S Y, et al. Passively Q-switched Ho, Pr∶LiLuF4 bulk laser at 295 μm using WS2 saturable absorbers[J]. Optical Materials Express, 2017, 7(6): 2090. [65] LIU X, ZHANG S, YAN Z, et al. WSe2 as a saturable absorber for a passively Q-switched Ho, Pr∶LLF laser at 2.95 μm[J]. Optical Materials Express, 2018, 8(5): 1213-1220. [66] FAN X W, NIE H K, ZHAO S, et al. MXene saturable absorber for nanosecond pulse generation in a mid-infrared Ho, Pr∶LLF bulk laser[J]. Optical Materials Express, 2019, 9(10): 3977-3984. [67] ZHANG S Y, LIU X X, GUO L, et al. Passively Q-switched Ho, Pr∶LLF bulk slab laser at 2.95 μm based on MoS2 saturable absorber[J]. IEEE Photonics Technology Letters, 2017, 29(24): 2258-2261. [68] YAN Z Y, LI G Q, LI T, et al. Passively Q-switched Ho, Pr∶LiLuF4 laser at 2.95 μm using MoSe2[J]. IEEE Photonics Journal, 2017, 9(5): 1-7. [69] YANG Y L, ZHANG L H, LI S M, et al. Growth and mid-infrared luminescence property of Ho3+ doped CeF3 single crystal[J]. Infrared Physics & Technology, 2020, 105: 103230. [70] XIONG J, PENG H Y, HU P C, et al. Optical characterization of Tm3+ in LiYF4 and LiLuF4 crystals[J]. Journal of Physics D: Applied Physics, 2010, 43(18): 185402. [71] YIN J G, HANG Y, HE X H, et al. Transition intensities and excited state relaxation dynamics of Tm3+ in Tm∶PbF2 crystal[J]. Laser Physics, 2012, 22(3): 609-613. [72] HONG J Q, ZHANG L H, XU M, et al. Optical characterization of Tm3+ in LaF3 single crystal[J]. Infrared Physics & Technology, 2017, 82: 50-55. [73] ZHAO C C, HANG Y, ZHANG L H, et al. Polarized spectroscopic properties of Ho3+-doped LuLiF4 single crystal for 2 μm and 2.9 μm lasers[J]. Optical Materials, 2011, 33(11): 1610-1615. [74] ZHANG P X, ZHANG L H, HONG J Q, et al. Spectroscopic properties of Ho3+-doped PbF2 single crystal for 2 μm[J]. Optical Materials, 2015, 46: 389-392. [75] HONG J Q, ZHANG L H, ZHANG P X, et al. Ho∶LaF3 single crystal as potential material for 2 μm and 2.9 μm lasers[J]. Infrared Physics & Technology, 2016, 76: 636-640. [76] CHENG X J, ZHANG S Y, XU J, et al. High-power diode-end-pumped Tm∶LiLuF4 slab lasers[J]. Optics Express, 2009, 17(17): 14895-14901. [77] 陈光珠,杭 寅,彭海燕,等.Tm∶YLiF4激光晶体的生长及性能研究[J].光学学报,2011,31(1):209-212. CHEN G Z, HANG Y, PENG H Y, et al. Growth and spectral properties of Tm∶YLiF4 cystals[J]. Acta Optica Sinica, 2011, 31(1): 209-212(in Chinese). [78] ZHANG P X, WAN Y B, YIN J G, et al. Low-phonon PbF2∶Tm3+-doped crystal for 1.9 μm lasing[J]. Laser Physics Letters, 2014, 11(11): 115802. [79] LI S M, ZHANG L H, LI C, et al. Growth, thermal conductivity, spectra, and 2 μm continuous-wave characteristics of Tm3+, Ho3+ co-doped LaF3 crystal[J]. Journal of Luminescence, 2019, 210: 142-145. [80] ZHANG Y S, CAI Y Q, XU B, et al. Extending the wavelength tunability from 2.01 to 2.1 μm and simultaneous dual-wavelength operation at 2.05 and 2.3 μm in diode-pumped Tm∶YLF lasers[J]. Journal of Luminescence, 2020, 218: 116873. [81] PENG H Y, ZHANG K, ZHANG L H, et al. Spectral properties and laser performance of Tm, Ho∶LuLF4 crystal[C]//Proc SPIE 7276, Photonics and Optoelectronics Meetings (POEM) 2008: Laser Technology and Applications, 2009, 7276: 185-192. [82] 宁凯杰,彭海燕,赵呈春,等.Tm∶Ho∶LuLiF4激光晶体生长和性能[C]//第十六届全国晶体生长与材料学术会议论文集-07新材料、新方法、新器件和设备.合肥,2012:18. NING K J, PENG H Y, ZHAO C C, et al. Growth and properties of .Tm∶Ho∶LuLiF4 laser crystal[C]//Proceedings of the 16th National Conference on Crystal Growth and Materials: 07 New Materials, New Methods, New Devices and Equipment. Heifei, 2012: 18(in Chinese). [83] 徐 林,唐玉龙,张帅一,等.高功率脉冲2 μm光纤主振荡功率放大器系统[J].中国激光,2010,37(9):2384-2388. XU L, TANG Y L, ZHANG S Y, et al. High power pulsed 2 μm fiber main oscillator power-amplifier system[J]. Chinese Journal of Lasers, 2010,37(9):2384-2388(in Chinese). [84] CHENG X J, XU J Q, HANG Y, et al. High-power diode-end-pumped Tm∶YAP and Tm∶YLF slab lasers[J]. Chinese Optics Letters, 2011, 9(9): 091406. [85] DAI Y F, LI Y Y, ZOU X, et al. Compact passively Q-switched Tm∶YLF laser with a polycrystalline Cr∶ZnS saturable absorber[J]. Optics & Laser Technology, 2014, 57: 202-205. [86] ZOU X, LENG Y X, LI Y Y, et al. Passively Q-switched mode-locked Tm∶LLF laser with a MoS2 saturable absorber[J]. Chinese Optics Letters, 2015, 13(8): 081405. [87] LÜ Y F, YIN X D, XIA J, et al. All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixing blue laser at 488 nm[J]. Laser Physics Letters, 2009, 6(12): 860. [88] ZHAO C C, ZHANG L H, HANG Y, et al. Optical spectroscopy of Nd3+ in LiLuF4 single crystals[J]. Journal of Physics D: Applied Physics, 2010, 43(49): 495403. [89] ZHAO C C, HE M Z, HANG Y, et al. Spectroscopic characterization and diode-pumped 910 nm laser of Nd∶LiLuF4 crystal[J]. Laser Physics, 2012, 22(5): 918-921. [90] LI R, YU T, ZHANG L H, et al. 1047-nm all-solid-state laser based on Nd∶LuLF[J]. Chinese Optics Letters, 2011, 9(2): 55-56. [91] ZHANG P X, YIN J G, ZHANG R, et al. Crystal growth, spectroscopic characterization and laser performance of Tm/Mg∶LiNbO3 crystal[J]. Laser Physics, 2014, 24(3): 263-268 [92] WANG M, ZHANG S, TANG Y, et al. Performance of actively Q-switched Nd∶LiLuF4 crystal end-pumped by a 792 nm laser diode[J]. Applied Physics B, 2011, 104(4): 829-833. [93] LI H Q, ZHANG R, TANG Y L, et al. Efficient dual-wavelength Nd∶LuLiF4 laser[J]. Optics Letters, 2013, 38(21): 4425-4428. [94] ZHANG P X, WAN Y B, YIN J G, et al. Spectroscopic, thermal and laser characteristics of Nd∶LiLuF4 for 1314 nm laser[J]. Laser Physics Letters, 2014, 11(11): 115803. [95] HONG J Q, ZHANG L H, ZHANG P X, et al. Growth, optical characterization and evaluation of laser properties of Nd∶LaF3 crystal[J]. Journal of Alloys and Compounds, 2015, 646: 706-709. [96] YANG Y L, ZHANG L H, QUAN C, et al. Growth, thermal, and polarized spectroscopic properties of Nd∶CeF3 crystal for dual-wavelength lasers[J]. Journal of Luminescence, 2020, 227: 117558. [97] HONG J Q, ZHANG L H, LI J, et al. Spectroscopic, thermal and CW dual-wavelength laser characteristics of Nd∶LaF3 single crystal[J]. Optical Materials, 2016, 53: 10-13. [98] YIN J G, HANG Y, LIANG X Y, et al. Yb, Na∶PbF2: a potential new high-power laser material[J]. Optics Letters, 2010, 35(20): 3435-3437. [99] YIN J G, HANG Y, HE X M, et al. Crystal growth and spectroscopic characterization of Yb-doped and Yb, Na-codoped PbF2 laser crystals[J]. Journal of Alloys and Compounds, 2011, 509(23): 6567-6570. [100] YIN J G, HANG Y, HE X M, et al. Room-temperature diode-pumped Yb, Na∶PbF2 laser[J]. Optics Letters, 2012, 37(1): 109-111. [101] YIN J G, HANG Y, HE X M, et al. Direct comparison of Yb3+-doped LiYF4 and LiLuF4 as laser media at room-temperature[J]. Laser Physics Letters, 2012, 9(2): 126-130. [102] AGNESI A, GREBORIO A, PIRZIO F, et al. Femtosecond Nd∶glass lasers pumped by single-mode laser diodes and mode locked with carbon nanotube or semiconductor saturable absorber mirrors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(1): 74-80. [103] RYAN J R, BEACH R. Optical absorption and stimulated emission of neodymium in yttrium lithium fluoride[J]. Josa B, 1992, 9(10): 1883-1887. [104] LI C, LENG Y X, LI S M, et al. Demonstration of diode-pumped Yb∶LaF3 and Tm, Ho∶LaF3 lasers[J]. Applied Sciences, 2019, 9(2): 334. [105] NAKATSU Y, NAGAO Y, KOZURU K, et al. High-efficiency blue and green laser diodes for laser displays[C]//SPIE OPTO. Proc SPIE 10918, Gallium Nitride Materials and Devices XIV, San Francisco, California, USA. 2019, 10918: 99-107. [106] LING Z, YI Y, YANG Z, et al. All-solid-state dual end pumped YVO4∶Nd/LBO blue laser with 21.8 W output power at 457 nm[J]. Optics and Spectroscopy, 2014, 116(3): 470-472. [107] KANTOLA E, LEINONEN T, RANTA S N, et al. High-efficiency 20 W yellow VECSEL[J]. Optics Express, 2014, 22(6): 6372-6380. [108] SANDROCK T, SCHEIFE H, HEUMANN E, et al. High-power continuous-wave upconversion fiber laser at room temperature[J]. Optics Letters, 1997, 22(11): 808-810. [109] LI N, LIU B, SHI J J, et al. Research progress of rare-earth doped laser crystals in visible region[J]. Journal of Inorganic Materials, 2019, 34(6): 573. [110] DORENBOS P. 5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds[J]. Physical Review B Condensed Matter, 2000, 62(23): 15640-15649. [111] BOWMAN S R, O'CONNOR S, CONDON N J. Diode pumped yellow dysprosium lasers[J]. Optics Express, 2012, 20(12): 12906-12911. [112] LIMPERT J, ZELLMER H, RIEDEL P, et al. Laser oscillation in yellow and blue spectral range in Dy3+∶ZBLAN[J]. Electronics Letters, 2000, 36(16): 1386. [113] QU B, XU B, LUO S Y, et al. InGaN-LD-pumped continuous-wave deep red laser at 670 nm in Pr3+∶LiYF4 crystal[J]. IEEE Photonics Technology Letters, 2015, 27(4): 333-335. [114] RICHTER A, HEUMANN E, HUBER G, et al. Power scaling of semiconductor laser pumped Praseodymium-lasers[J]. Optics Express, 2007, 15(8): 5172-5178. [115] LI S M, ZHANG L H, ZHANG P X, et al. Spectroscopic characterizations of Dy∶LaF3 crystal[J]. Infrared Physics & Technology, 2017, 87: 65-71. [116] YANG Y L, ZHANG L H, LI S M, et al. Crystal growth and 570 nm emission of Dy3+ doped CeF3 single crystal[J]. Journal of Luminescence, 2019, 215: 116707. [117] ZHANG Y X, YANG Y L, ZHANG L H, et al. Watt-level continuous-wave and passively Q-switched red lasers pumped by a single blue laser diode[J]. Chinese Optics Letters, 2019, 17(7): 071402. |
[1] | 王云杰, 文杜林, 苏欣. A3PO4(A=Li,Na,K,Rb,Cs)电子结构与光学性质的第一性原理研究[J]. 人工晶体学报, 2024, 53(1): 123-131. |
[2] | 詹廷吾, 贾伟, 董海亮, 李天保, 贾志刚, 许并社. 多孔GaN薄膜的制备与光学性能研究[J]. 人工晶体学报, 2023, 52(9): 1599-1608. |
[3] | 张平威, 林龙, 张战营. 基于第一性原理的Au、Cu、Sb掺杂CdTe的结构模拟和光学性能预测[J]. 人工晶体学报, 2023, 52(8): 1400-1406. |
[4] | 王萌萌, 尹延如, 丁晓圆, 张晶, 付秀伟, 贾志泰, 陶绪堂. 倍半氧化物晶体及其1~3 μm波段激光性能研究进展[J]. 人工晶体学报, 2023, 52(7): 1169-1194. |
[5] | 刘小虎, 李坚富, 朱昭捷, 涂朝阳, 王阁阳, 杨金芳, 朱江峰, 王燕. Yb∶CaGdAlO4晶体及其超快激光技术研究进展[J]. 人工晶体学报, 2023, 52(7): 1195-1207. |
[6] | 王迪, 汤港, 张博, 王墉哲, 张中晗, 姜大朋, 寇华敏, 苏良碧. Nd,Y∶SrF2激光晶体的位错缺陷表征及分布研究[J]. 人工晶体学报, 2023, 52(7): 1208-1218. |
[7] | 马凤凯, 张振, 姜大朋, 张中晗, 李真, 寇华敏, 陈振强, 苏良碧. 稀土掺杂萤石结构卤化物晶体团簇结构研究[J]. 人工晶体学报, 2023, 52(7): 1219-1235. |
[8] | 李兴旺, 韩剑锋, 芦佳, 邢晓文, 王永国, 魏磊, 徐学珍. 大尺寸Tm∶YAP复合激光晶体的生长与性能研究[J]. 人工晶体学报, 2023, 52(7): 1236-1242. |
[9] | 孙贵花, 张庆礼, 李加红, 罗建乔, 王小飞, 高进云. Yb,Ho∶GdScO3晶体生长及光谱性能分析[J]. 人工晶体学报, 2023, 52(7): 1243-1249. |
[10] | 王无敌, 王庆国, 薛艳艳, 唐慧丽, 徐子寒, 张晨波, 房前成, 吴锋, 罗平, 徐晓东, 苏良碧, 李岩, 韩建峰, 逯占文, 徐军. Pr3+掺杂碱土混合氟化物激光晶体的生长与发光性能研究[J]. 人工晶体学报, 2023, 52(7): 1258-1269. |
[11] | 黄建华, 吴杰, 黄艺东, 林炎富, 龚兴红, 陈雨金. Er3+,Yb3+∶Ba3Gd(PO4)3晶体的生长、光谱和1.5 μm激光性能[J]. 人工晶体学报, 2023, 52(7): 1286-1295. |
[12] | 刘青雄, 王天予, 刘孚安, 吴倩, 尹延如, 赫崇君, 高泽亮, 夏明军. 非线性光学晶体K3B6O10Br的生长与光电性能研究[J]. 人工晶体学报, 2023, 52(7): 1296-1301. |
[13] | 颜涛, 范雨杰, 徐峰, 陈昱, 罗敏. KLi(HC3N3O3)·2H2O晶体的电光效应和生长研究[J]. 人工晶体学报, 2023, 52(7): 1302-1307. |
[14] | 魏玲莉, 倪友保, 黄昌保, 吴海信, 王振友, 胡倩倩, 余学舟, 刘国晋, 周强. 大尺寸ZnTe晶体的生长与性能[J]. 人工晶体学报, 2023, 52(7): 1317-1324. |
[15] | 李琳, 谭慧瑜, 郑为比, 谭俊成, 李真, 张沛雄, 陈振强. Er掺杂CGA晶体的生长及浓度优化研究[J]. 人工晶体学报, 2023, 52(7): 1325-1334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||