[1] FRANKEN P A, HILL A E, PETERS C W, et al. Generation of second harmonic[J]. Physical Review Letters, 1961, 7: 118. [2] CHEN X Y, LUO Z D, JAQUE D, et al. Comparison of optical spectra of Nd3+ in NdAl3(BO3)4(NAB), Nd∶GdAl3(BO3)4(NGAB) and Nd∶Gd0.2Y0.8Al3(BO3)4(NGYAB) crystals[J]. Journal of Physics: Condensed Matter, 2001, 13(5): 1171-1178. [3] HUANG M L, CHEN Y J, CHEN X Y, et al. A CW blue laser emission by self-sum-frequency-mixing in Nd3+∶GdAl3(BO3)4 crystal[J]. Optics Communications, 2002, 208(1/2/3): 163-166. [4] LIANG K C, CHAUDHURY R P, LORENZ B, et al. Magnetoelectricity in the system RAl3(BO3)4 (R=Tb, Ho, Er, Tm)[EB/OL]. 2012: arXiv: 1201.4890. https://arxiv.org/abs/1201.4890 [5] VASILIEV A N, POPOVA E A. Rare-earth ferroborates RFe3(BO3)4[J]. Low Temperature Physics, 2006, 32(8): 735-747. [6] KADOMTSEVA A M, POPOV Y F, VOROB’EV G P, et al. Magnetoelectric and magnetoelastic properties of rare-earth ferroborates[J]. Low Temperature Physics, 2010, 36(6): 511-521. [7] KUZ’MICHEVA G M, KAUROVA I A, RYBAKOV V B, et al. Crystallochemical design of huntite-family compounds[J]. Crystals, 2019, 9(2): 100-148. [8] CHEN C T, YE N, LIN J, et al. Computer-assisted design for nonlinear optical crystals[C]//Proc SPIE 3556, Electro-Optic and Second Harmonic Generation Materials, Devices, and Applications II, 1998, 3556: 14-20. [9] LEONYUK N I. Recent developments in the growth of Rm3(BO3)4 crystals for science and modern applications[J]. Progress in Crystal Growth and Characterization of Materials, 1995, 31(3/4): 279-312. [10] SCHÜTZ I, FREITAG I, WALLENSTEIN R. Miniature self-frequency-doubling CW Nd∶YAB laser pumped by a diode-laser[J]. Optics Communications, 1990, 77(2/3): 221-225. [11] YU J Q, LIU L J, ZHAI N X, et al. Crystal growth and optical properties of YAl3(BO3)4 for UV applications[J]. Journal of Crystal Growth, 2012, 341(1): 61-65. [12] TRAN T T, YU H W, RONDINELLI J M, et al. Deep ultraviolet nonlinear optical materials[J]. Chemistry of Materials, 2016, 28(15): 5238-5258. [13] BALLMAN A A. A new series of synthetic borates isostructural with the carbonate mineral huntite[J]. American Mineralogist, 1962, 47: 1380-1383. [14] FILIMONOV A A, LEONYUK N I, MEISSNER L B, et al. Nonlinear optical properties of isomorphic family of crystals with yttrium-aluminium borate (YAB) structure[J]. Kristall Und Technik, 1974, 9(1): 63-66. [15] YU X S, YUE Y C, YAO J Y, et al. YAl3(BO3)4∶crystal growth and characterization[J]. Journal of Crystal Growth, 2010, 312(20): 3029-3033. [16] ORESHONKOV A S, ROGINSKII E M, SHESTAKOV N P, et al. Structural, electronic and vibrational properties of YAl3(BO3)4[J]. Materials, 2020, 13(3): 545. [17] LEONYUK N I, LEONYUK L I. Growth and characterization of RM3(BO3)4 crystals[J]. Progress in Crystal Growth and Characterization of Materials, 1995, 31(3/4): 179-278. [18] LIU L J, LIU C L, WANG X Y, et al. Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals[J]. Solid State Sciences, 2009, 11(4): 841-844. [19] LIU C L, LIU L J, ZHANG X, et al. Crystal growth and optical properties of non-UV absorption K2Al2B2O7 crystals[J]. Journal of Crystal Growth, 2011, 318(1): 618-620. [20] LIU H, LI J, FANG S H, et al. Growth of YAl3(BO3)4 crystals with tungstate based flux[J]. Materials Research Innovations, 2011, 15(2): 102-106. [21] YANG F G, ZHU Z J, YOU Z Y, et al. The growth, thermal and nonlinear optical properties of single-crystal GdAl3(BO3)4[J]. Laser Physics, 2011, 21(4): 750-754. [22] LIAO J S, LIN Y F, CHEN Y J, et al. Growth and spectral properties of Yb3+∶GdAl3(BO3)4 single crystal[J]. Journal of Crystal Growth, 2004, 269(2/3/4): 484-488. [23] SUN C T, WANG Y, TU C Y, et al. Mesoscale morphology evolution of a GdAl3(BO3)4 single crystal in a flux system: a case study of thermodynamic control of the anisotropic mass transfer during crystal growth[J]. CrystEngComm, 2015, 17(17): 3208-3213. [24] YUE Y, ZHU Y Y, ZHAO Y, et al. Growth and nonlinear optical properties of GdAl3(BO3)4 in a flux without molybdate[J]. Crystal Growth & Design, 2016, 16: 347-350. [25] ZHU Y Y, YUE Y C, TU H, et al. Flux growth and 266 nm generation of a GdAl3(BO3)4 crystal[J]. CrystEngComm, 2016, 18(16): 2965-2968. [26] JUNG S T, KANG J K, CHUNG S J. Crystal growth and X-ray topography of NdAl3(BO3)4[J]. Journal of Crystal Growth, 1995, 149(3/4): 207-214. [27] JUNG S T, CHOI D Y, CHUNG S J. Crystal growth of NdAl3(BO3)4 from K2O/MoO3/Nd2O3/B2O3/KF flux[J]. Journal of Crystal Growth, 1996, 160(3/4): 305-309. [28] VOLKOVA E A, MALTSEV V V, LEONYUK N I. Flux growth of NdAl3(BO3)4 single crystals from a K2Mo3O10 based system[J]. CrystEngComm, 2017, 19(7): 1071-1075. [29] JAQUE D, ENGUITA O, LUO Z D, et al. Up-conversion luminescence in the NdAl3(BO3)4 (NAB) microchip laser crystal[J]. Optical Materials, 2004, 25(1): 9-15. [30] TESHIMA K, KIKUCHI Y, SUZUKI T, et al. Growth of ErAl3(BO3)4 single crystals from a K2Mo3O10 flux[J]. Crystal Growth & Design, 2006, 6: 1766-1768. [31] MALAKHOVSKII A V, KUTSAK T V, SUKHACHEV A L, et al. Spectroscopic properties of ErAl3(BO3)4 single crystal[J]. Chemical Physics, 2014, 428: 137-143. [32] FANG S H, LIU H, YE N. Growth and thermophysical properties of the nonlinear optical crystal LuAl3(BO3)4[J]. Crystal Growth & Design, 2011, 11: 5048-5052. [33] FANG S H, LIU H, HUANG L X, et al. Growth and optical properties of nonlinear LuAl3(BO3)4 crystals[J]. Optics Express, 2013, 21(14): 16415-16423. [34] XU Y Y, GONG X H, CHEN Y J, et al. Crystal growth and optical properties of YbAl3(BO3)4: a promising stoichiometric laser crystal[J]. Journal of Crystal Growth, 2003, 252(1/2/3): 241-245. [35] LI J, ZHAO H Y, WANG J Y, et al. Growth and characteristic of YbAl3(BO3)4 crystal[J]. Journal of Rare Earths, 2006, 24(1): 130-132. [36] 李 静,王继扬,张怀金,等.大尺寸Yb∶YAl3(BO3)4晶体的生长及其自倍频激光性能研究[J].人工晶体学报,2005,34(5):778-781. LI J, WANG J Y, ZHANG H J, et al. Growth of large size Yb∶YAl3(BO3)4 crystal and its laser performance[J]. Journal of Synthetic Crystals, 2005, 34(5): 778-781 (in Chinese). [37] KUZNETSOV A B, KOKH K A, KONONOVA N G, et al. Polymorphism in SmSc3(BO3)4: crystal structure, luminescent and SHG properties[J]. Journal of Alloys and Compounds, 2021, 851: 156825. [38] JAMOUS A Y, KUZNETSOV A B, KOKH K A, et al. Study of RBO3-ScBO3 phase diagrams and RSc3(BO3)4 orthoborates (R=La, Pr and Nd)[J]. Journal of Alloys and Compounds, 2022, 905: 164162. [39] PETERSON G A, KESZLER D A, REYNOLDS T A. Stoichiometric, trigonal huntite borate CeSc3(BO3)4[J]. International Journal of Inorganic Materials, 2000, 2(1): 101-106. [40] KUZ’MIN N N, BOLDYREV K N, LEONYUK N I, et al. Luminescence and nonlinear optical properties of borates LnGa3(BO3)4 (Ln=Nd, Sm, Tb, Er, Dy, or Ho)[J]. Optics and Spectroscopy, 2019, 127(1): 107-112. [41] BOROVIKOVA E Y, BOLDYREV K N, AKSENOV S M, et al. Crystal growth, structure, infrared spectroscopy, and luminescent properties of rare-earth gallium borates RGa3(BO3)4, R=Nd, Sm-Er, Y[J]. Optical Materials, 2015, 49: 304-311. [42] IVONINA N. P, KUTOVOJ S A, LAPTEV V V, et al. Crystal growth and study of rare earth scandoborates[J]. Izvestiya Akademii Nauk SSSR. Neorganicheskie Materialy, 1991, 27: 64-67. [43] DURMANOV S T, KUZMIN O V, KUZMICHEVA G M, et al. Binary rare-earth scandium borates for diode-pumped lasers[J]. Optical Materials, 2001, 18(2): 243-284. [44] XU X, YE N. GdxLa1-xSc3(BO3)4: a new nonlinear optical crystal[J]. Journal of Crystal Growth, 2011, 324(1): 304-308. [45] GHEORGHE L, KHALED F, ACHIM A, et al. Czochralski growth and characterization of incongruent melting LaxGdyScz(BO3)4(x+y+z= 4) nonlinear optical crystal[J]. Crystal Growth & Design, 2016, 16(6): 3473-3479. [46] YE N, STONE-SUNDBERG J, HRUSCHKA M A, et al. Nonlinear optical crystal YxLayScz(BO3)4 (x+y+z=4)[J]. Chemistry of Materials, 2005, 17(10): 2687-2692. [47] GHEORGHE L, GRECULEASA M, BROASCA A, et al. Incongruent melting LaxYySc4-x-y(BO3)4∶LYSB nonlinear optical crystal grown by the Czochralski method[J]. ACS Applied Materials & Interfaces, 2019, 11(23): 20987-20994. [48] LI Y K, AKA G, KAHN-HARARI A, et al. Phase transition, growth, and optical properties of NdxLa1-xSc3(BO3)4 crystals[J]. Journal of Materials Research, 2001, 16(1): 38-44. [49] LI W, HUANG L X, ZHANG G, et al. Growth and characterization of nonlinear optical crystal Lu0.66La0.95Sc2.39(BO3)4[J]. Journal of Crystal Growth, 2007, 307(2): 405-409. [50] KOKH A, KUZNETSOV A, KONONOVA N, et al. Three-cation scandium borates RxLa1-xSc3(BO3)4(R=Sm, Tb): synthesis, structure, crystal growth and luminescent properties[C]. 14th International Congress for Applied Mineralogy, 2019, 267-271. [51] KUZNETSOV A, KOKH A, KONONOVA N, et al. New scandium borates RxLayScz(BO3)4 (x+y+z=4, R=Sm, Tb): synthesis, growth, structure and optical properties[J]. Materials Research Bulletin, 2020, 126: 110850. [52] BROASCA A, GRECULEASA M, VOICU F, et al. Growth and characterization of 3.5at.% Nd∶LGSB bifunctional crystal[J]. Optical Materials, 2022, 123: 111832. [53] MEYN J P, JENSEN T, HUBER G. Spectroscopic properties and efficient diode-pumped laser operation of neodymium-doped lanthanum scandium borate[J]. IEEE Journal of Quantum Electronics, 1994, 30(4): 913-917. [54] LIN Z S, WANG Z Z, CHEN C T, et al. Mechanism for linear and nonlinear optical effects in monoclinic bismuth borate (BiB3O6) crystal[J]. Journal of Applied Physics, 2001, 90(11): 5585-5590. [55] WANG S C, YE N. Nonlinear optical crystal BiAlGa2(BO3)4[J]. Solid State Sciences, 2007, 9(8): 713-717. |